

Additel 878 Reference Drywell Calibrators

Additel 878 Reference Dry Well Calibrators

-----User Manual

[Version: 2009V01]

Additel Corporation

STATEMENT

This user's manual provides operating and safety instructions for the Additel 878 reference dry well calibrators. To ensure correct operation and safety, please follow the instructions in this manual. Additel Corporation reserves the right to change the contents and other information contained in this manual without notice. For the most up-to-date manual, please visit www.additel.com.

Contents

Safety Instructions	14
Safety Instructions Cautions:	1
1. Introduction	18
1.1 Overview	18
1.2 Model Information	19
1.3 Basic Structure	20
1.4 Features	2
1.5 Safety Features	2
1.6 Environmental Conditions	
1.7 Technical Specifications	24
1.7.1 General Specifications:	24
1.7.2 Reference Dry Well Specifications:	2!
1.7.3 Electrical Measurement Specifications:	26
1.8 Certification Standards and Mechanical Properties	29
2. Display and Functional Operation	3(

	2.1 Main Operational Interface	30
	2.2 System Temperature Unit Settings	32
	2.3 Temperature Output	33
	2.3.1 Temperature Output Settings	33
	2.3.2 Target Temperature Input	35
	2.3.3 Start/Pause Temperature Control:	36
	2.3.4 Temperature Control Stabilization:	
	2.4 DUT Measurement	36
	2.4.1 DUT Settings	36
	2.4.3 Thermal Couple (TC) Measurement	41
	2.4.4 Electric Current (mA) Measurement	43
	2.4.6 Switch Test	47
	2.4.6 HART Transmitter Measurement	48
	2.5 Hart Communicator	
	2.5.1 HART Connection and Search	55
	2.5.2 HART Communicator Operations	55
3	. Settings	56
	3.1 Communication Settings	56

3.1.1 Ethernet	56
3.1.2 Wi-Fi	57
3.1.3 Bluetooth	58
3.2 Sensor Library	59
3.2.1 Management Functions	59
3.2.2 Intelligent Sensor	62
3.2.3 ITS-90 Sensor	64
3.2.4 CVD Sensor	64
3.2.5 Standard TC	64
3.2.6 RTD	65
3.2.7 Thermistor	66
3.3 Data Protection	67
3.4 ACloud Service	68
3.5 System Service	69
3.5.1 System Calibration	69
3.5.2 Factory Reset	84
3.5.3 Maintenance	85
3.5.4 System Updated	86

3.6 Personalization	87
3.6.1 Temperature Unit	87
3.6.2 Date and Time	87
3.6.3 Language	88
3.6.4 Sound	88
3.6.5 Screen Brightness	88
3.6.6 Screen Protector	88
3.6.7 Display Mode	89
3.7 Product Information	89
4. Task	90
4.1 Device Center	90
4.1.1 Device Management	91
4.1.2 Thermal Resistance	92
4.1.3 Thermocouple	94
4.1.4 Thermistor	95
4.1.5 TemperatureTransmitter	97
4.1.6 Temperature Switch	99
4.1.7 Glass Liquid Thermometer, Surface Thermometer	101

4.1.8 Temperature Controller, Bimetal Thermometer, Pressure Thermometer, Transformer Winding Thermostat	103
4.1.9 Digital Thermometer	105
4.1.10 Double Contact Switch	107
4.1.11 Integrated Thermal Resistance Indicator Thermometer	109
4.1.12 Accuracy Settings of Inspected Equipment	111
4.2 Test Center	113
4.2.1 Task Management	113
4.2.2 Task Settings	116
4.3.1 Selection of Tested Equipment and Test Settings	125
4.3.2 Task Operation Interface	125
4.4.1 Task Report	134
4.4.2 Saving Reports	135
4.5.1 Data View and Management	136
4.5.2 Data Deletion	137
4.5.3 Data Search	137
5. Application	138
5.1 Thermo Calculator	139
5.2 Temperature Control Data Recording	141

5.3 Drying and Dehumidificataion	146
5.4 Step Test	147
5.5 Switch Test	150
5.6 Snapshot Feature	152
5.7 Annealing Application	154
5.8 Water Triple Point	157
5.8.1 Process Instruction	157
5.8.2 How To Use	159
5.9 Grid Quality	159

Table

Table 1 Model Information	19
Table 1 Model Information Table 2 Basic Stucture	2 [^]
Table 3 General Specifications	24
Table 4 Reference Dry Well Calibrator Specifications	25
Table 5 Electrical Measurement Specifications	26
Table 6 Certification Standards and Mechanical Properties	29
Table 7 Temperature Output Settings	34
Table 8 Standard Parameters	3
Table 9 DUT Settings Table 10 RTD wiring selection Table 11 Cold Junction Type	37
Table 10 RTD wiring selection	40
Table 11 Cold Junction Type	42
Table 12 Voltage Measurement Range Selection	46
Table 13 Switch Type Selection	47
Table 14 HART Device Information	50
Table 15 HART Device Output	5′
Table 16 HART Device Process Explanation	
Table 17 Ethernet Address Acquisition methods	56
Table 18 Ethernet Address Manually Settings	57
Table 19 Wi-Fi Settings	57
Table 20 Wi-Fi Communication Manually Settings	58
Table 21 Bluetooth Settings	59
Table 23 Sensor Display Settings	60
Table 24 The interface of sensor list	

Table 25 Sensor information	
Table 26 Sensor basic information	62
Table 27 Sensor parameter	62
Table 28 Sensor parameter	63
Table 29 Sensor Based Information	64
Table 30 Type S Thermocopule Parameter Settings	65
Table 31 TRD Parameter Settings	65
Table 32 Thermistor Parameter Settings	66
Table 33 NTCParameter settings	67
Table 34 Stein-Hart Thermister Parameters	67
Table 35 Data Protection Page	68
Table 36 ACloud Service	69
Table 37 Temperature Calibration History Record	82
Table 38 Verification Date Save Settings	83
Table 39 Date and Time	87
Table 40 Sound Setting	88
Table 41 The Test Device Search and Find Condition in Task Center	91
Table 42 Thermal Resistance to Be Inspected Adding Setting in Task Center	92
Table 43 Thermocouple to be Inspected Adding Setting in Task Center	94
Table 44 Thermistor to be Inspected Adding Setting in Task Center	95
Table 45 Temperature Transmitter to Be Inspected Adding Setting in Task Center	97
Table 46 Temperature Switch to Be Inspected Adding Setting in Task Center	99
Table 47 Glass Liquid Thermometers, Surface Thermometer to Be Inspected Adding Settings in Task Center	101
Table 48 Added Settings in Task Center	103
Table 49 The Digital Thermometer to Be Inspected Adding Setting in Task Center	105
Table 50 The Tested Double Contact Switch Adding Setting in Task Center	107

Table 51 The Inspected Integrated Thermal Resistance Indicator Thermometer Adding Setting in Task Center	109
Table 52 Task Search and Find Condition of Task Center	115
Table 53 Dual Channel Test Compatible information of Task Ceneter	116
Table 54 Task Basic Information Setting Compatibility Table	117
Table 55 Task Basic Information Settings	119
Table 56 Task Temperature Control Settings	120
Table 57 Task equipment setting compatibility	121
Table 58 Task equipment setting compatibility Explanation	122
Table 59 Electric Contact Test	124
Table 60 Typical Task Execution Interface Buttons	127
Table 61 Task Termination Interface Button	
Table 62 Task Data Saving Set	135
Table 63 Search Items	137
Table 64 Calculation of thermocouples	139
Table 65 Calculation of thermal resistance	140
Table 66 Temperature Control Data Recording Settings	141
Table 67 Temperature Control Data Recording Control Settings	143
Table 68 Temperature Control Recording Channel Settings	144
Table 69 Drying and Dehumidification	146
Table 70 Step Test	147
Table 71 STep Test Interface	149
Table 72 Switch Test	150
Table 73 Snapshot Settings	152
Table 74 Grid Quality	160

Figure

Figure 1 Basic Structure	20
Figure 2 Main Screen	
Figure 3 RTD Connection	
Figure 4 TC Connection	4′
Figure 5 Connection way of Electric Current(mA) Measurement	44
Figure 6 Connection Diagram for Voltage Measurement	4
Figure 7 Connection Diagram for Switch Testing	47
Figure 8 HART Transmitter Connection Diagram	48
Figure 9 Typical Task Operation Interface	126
Figure 10 Task Temperature Swich Operation Interface	130

Safety Instructions

Warnings - identify action or conditions that may be hazards to the user.

Cautions - identify action or conditions that may damage the calibrator or the equipment under test.

Warning:

To prevent injury, please follow the instruction manual for use.

To prevent possible electrical shock, fire, or personal injury, please do following:

1. General:

- ◆ Before using the product, please read the manual, especially the "Safety Instructions" section.
- ◆ Don't use the device ouraisw of the environmental conditions specified.
- ◆ The dry well calibrator should be used by trained personnel only.
- ◆ Before initial use or anytime the reference dry well calibrator has not been used for more than 10 days, the calibrator needs to be started using the "Dry-out" function to meet all safety requirements and

°C. please

specifications, see section 5.3.

- ◆ Do not use the product if it is damaged or operates incorrectly.
- ◆ Do not use in flammable, high humidity, or dusty environments.

2. High Temperature:

- ◆ The Reference Dry Well Calibrator has a high temperature warning symbom ♠, this symbol indicates when the calibrator itself temperature is over 50 °C.
- Verify the status of the high temperature indicator prior to each use to avoid potential harm when handling the unit, probes and inserts.
- ◆ The temperature of the calibrator exceeds 50 thermocouple calibration calibrator, never touch the high temperature parts inside the calibrator.
- ◆ To avoid damaging the calibrator or units under test, do not cut off the power supply when temperature of calibrator body is above 100 °C.

◆ If you are unsure of the temperature of the reference dry well calibrator or any probes under test, do not touch any components of with the exception of the display screen, power swich and handle until ample time has passed to ensure components are not hot to the touch.

3. Electrical:

- Double check the power connection, fuse model and installation before use.
- ◆ Do not apply more than 30V AC or DC to any of the process calibrator inputs.
- ◆ Always use the correct fuse size and type if replacements are required.
- Only use the proper power cord prodvided.
- ◆ Do not apply any type of voltage to the switch terminal, which may damage the controller.
- Do not use any test leads other than those provided with the calibrator.
- ◆ Disconnect all test leads before switching to other electrical measurement functions.
- Do not disassemble dry well calibrator.

Cautions:

To prevent instrument damage, please follow this user manual.

To prevent possible electrical shock, fire, or instrument damage, please follow these guidelines:

- ◆ Do not shake, drop, or bump the calibrator while in use.
- ◆ Do not use any power cord other than the one provided with the calibrator.
- ◆ For safety, best performance and logivity, only use the calibrator under the specified environmental conditions.
- ◆ Do not unplug the power cord while in use.
- ◆ Do not clean the calibrator with liquid, please contact Addited for cleaning process.
- ◆ To avoid damaging the unit, do not drop anything into the calibrator.
- ◆ Do not use the calibrator, if it appears to have any issues, and contact Additel immediately.
- ◆ Do not modify the default configuration of the calibrator.

1. Introduction

1.1 Overview

Additel's commitment to continuous improvement, quality and time saving features are on full display in the ADT878 series. With three models to choose from, ranging from -40 to 700°C, you will find the perfect fit for your calibration needs. The Process Calibrator option adds an external reference input, a two-channel readout for UUT's and a full complement of capabilities to help with everything from measuring temperature sensors, to calibrating thermocouples, self-calibrating the Reference Well and configuring HART transmitters. Each unit comes standard with a large touchscreen display, dual-zone control and Additel's commitment to the best customer service in the industry. We are certain that you will be blown away by the outstanding performance of these game-changing Reference Dry Wells!

Contact us: Addited Corporation

Tel: +1-714-998-6899

www.additel.com

1.2 Model Information

Table 1 Model Information

Specification		ADT878PC			ADT878	
Temperature Range	(-40 ~ 160) °C	(-33 ~ 425)°C	(33 ~ 700) ℃	(-40 ~ 160)°C	(-33 ~ 425)°C	(33 ~ 700) °C
mA/mV/V/Ω						
measurement		•	•	-	-	•
DC 24V Output	•	•	•	-	-	1
HART communication	•	•	•	-	-	-
Switch Test	•	•	•	-	-	1
External standard RTD						
(Temperature Control)	•	•	•	-	-	-
Intelligent calibration	•	•	•	-	-	ı
Database	•	•	•	-	-	-
Applications	•	•	•	•	•	•
Intelligent Diagnosis	•	•	•	•	•	•
Remote Control	•	•	•	•	•	•
Weight	11.2 kg	9.7 kg	9.7 kg	11.2 kg	9.7 kg	9.7 kg

1.3 Basic Structure

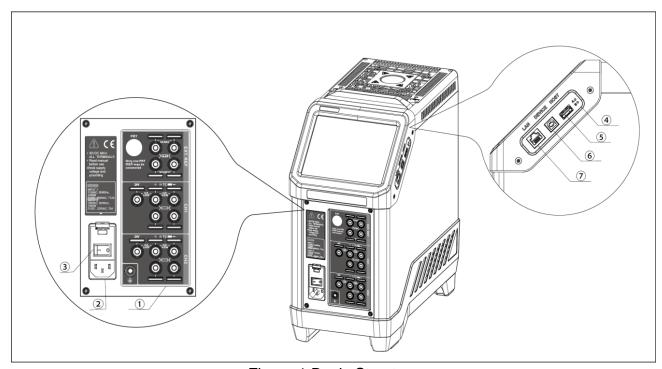


Figure 1 Basic Structure

Table 2 Basic Stucture

NO.	Description	Explanation
1)	Electrical Measurement plug	Electrical test connection interface, electrical test cable interface and thermocouple interface
2	Power Cord plug	Plug AC power supply
3	Power switch	Located on top of power cord plug
4	Reset Button	Calibrator forced reset button, please consult Additel for usage details
(5)	USB Port (Host)	Used to connect U disk for system upgrade
6	USB Port (Device)	Used to connect to the host computer
7	Network Cable Port	Used to connect to the host computer

1.4 Features

- ◆ Reference level performance in accuracy, stability and uniformity.
- ◆ Quick to temperature.
- ◆ Two-channel readout measures RTDs and TCs, and provides task documentation.

- ◆ Full HART communicator(PC Option)
- ◆ Optional external temperature control .
- ◆ Wi-Fi and Bluetooth capable.
- ◆ Color touch screen display.
- ◆ Quick-Push connectors (PC Option).
- ◆ Set point control by reference.
- ◆ Self-calibration feature.
- ◆ Optional TPW kit for built-in automatic realization (ADT878-160 only).
- ◆ Built-in automatic annealing feature (ADT878-700 only).

1.5 Safety Features

- ◆ Over-temperature hardware cutout .
- ◆ Over-temperature software cutout .
- ◆ Automatic detection of temperature control failure .
- ◆ Automatic detection of measuring element failure.

1.6 Environmental Conditions

◆ Working Temperature: (0~50)

◆ Humidity: 0 ~ 90%RH (0

◆ Storage Temperature: (-20~60) °F

◆ Atmosphere Pressure: Less than 3,000 m (9,800 ft)

♦ IP Rating: IP20

&C/(38°C 22) °F (Accuracy guarantee:

 $^{\circ}$ Condensinog)32°F $^{\circ}$ 122°F), RH (non

1.7 Technical Specifications

1.7.1 General Specifications:

Table 3 General Specifications

	Table & General Openhoations		
Specification	ADT878		
	(-40-160) °C	(33-425) °C	(33-700) °C
Dimensions	17	'0mm × 345mm × 330mm (13.6 x 6.7 x 13	.0 in)
Power Supply	(90-242) VAC, (45-65) Hz, 580W	(90-254) VAC, (4	45-65) Hz, 1400W
Display	6.5 in (16	5 mm) TFT industrial touchscreen, resolut	tion640×480
Communication	USB A, USB B, RJ45, WiFi, BLE		
Language	English, Chinese, Japanese, Russian, German, French, Italian, and Spanish		
Temperature Units	°C, °F , and K		
Temperature Resolution	0.001℃		
Fan Noise	(-40~-30) ℃: < 70dB(A) (-30-160) ℃: < 60dB(A) Mute Mode: <60 dB(A)		<60 dB(A)
Certificate	CE		

1.7.2 Reference Dry Well Specifications:

Table 4 Reference Dry Well Calibrator Specifications

Specification	878-160	878-425	878-700
Temperature Range at 23°C	-40°C to 160°C	33°C to 425°C	33°C to 700°C
			±0.20°C at 33°C
Display Accuracy	±0.1°C at Full Range	±0.2°C at Full Range	±0.20°C at 425°C
			±0.25°C at 660°C
		±0.010°C at 100°C	±0.010°C at 100°C
Stability (30 min)	±0.005°C at Full Range	±0.015°C at 225°C	±0.020°C at 425°C
		±0.020°C at 425°C	±0.030°C at 700°C
Avial Uniformity	±0.035°C at -40°C	±0.10°C at 100°C	±0.10°C at 100°C
Axial Uniformity at 60 mm (2.4 in)	±0.020°C at 0°C	±0.15°C at 225°C	±0.25°C at 425°C
at 60 mm (2.4 m)	±0.050°C at 160°C	±0.25°C at 425°C	±0.40°C at 700°C
A. dal I la fa matt.	±0.050°C at -40°C	±0.15°C at 100°C	±0.15°C at 100°C
Axial Uniformity at 80 mm (3.15 in)	±0.040°C at 0°C	±0.20°C at 225°C	±0.30°C at 425°C
at 60 mm (5.15 m)	±0.050°C at 160°C	±0.30°C at 425°C	±0.60°C at 700°C
		±0.025°C at 100°C	±0.025°C at 100°C
Radial Uniformity	±0.01°C at Full Range	±0.030°C at 225°C	±0.040°C at 425°C
		±0.040°C at 425°C	±0.060°C at 700°C
		±0.05°C (Display Sensor)	±0.02°C at 100°C
Loading Effect	±0.08°C (Display Sensor)		±0.05°C at 425°C
			±0.15°C at 700°C

1		1	1
		±0.01°C (External Sensor)	±0.01°C at 100°C
	±0.010°C (External Sensor)		±0.02°C at 425°C
			±0.03°C at 700°C
Hysteresis (Display Sensor)	0.025°C	0.04°C	0.07°C
Environmental Canditions	8°	C to 38°C guaranteed accuracy	
Environmental Conditions	0°C to 50°C, 0% to 90% RH non-condensing		
Storage Conditions	-20°C to 60°C		
Immersion Depth	160 mm (6.30 in)	193 mm (7	7.60 in)
Insert OD	31.9 mm (1.26 in) 30.8 mm (1.21 in)		1.21 in)
Ligating Time	4 min: -40°C to 23°C	15 min. 2200 to 42500	25 min: 23°C to 700°C
Heating Time	10 min: 23°C to 160°C	15 min: 23°C to 425°C	25 min: 23°C to 700°C
Cooling Time	8 min: 160°C to 23°C	24 min: 425°C to 100°C	30 min: 700°C to 100°C
Cooling Time	15 min: 23°C to -40°C	15 min: 100°C to 50°C	15 min: 100°C to 50°C
Typical Time to Stability	10 min		
Resolution		0.001°C	
Units		°C, °F, and K	
Display	6.5 in (165 mm) color touch screen		

Note: The above specifications are measured based on the insert ADT110-878-H(L)-INSERT-C.

1.7.3 Electrical Measurement Specifications:

Table 5 Electrical Measurement Specifications

Specification	Description
Readout Accuracy for 100 ohm PRT (Probe	±0.005°C at -40°C

Accuracy Not Included)	±0.006°C at 0°C
	±0.008°C at 50°C
	±0.009°C at 100°C
	±0.011°C at 160°C
	±0.015°C at 300°C
	±0.019°C at 425°C
	±0.026°C at 660°C
	±0.028°C at 700°C
Readout Resolution	0.1 mΩ
Reference Resistance Temperature Measurement Range	-200°C to 962°C
Defended Decistance Assument	0Ω to 50Ω: ±1.25mΩ
Reference Resistance Accuracy	50Ω to 400Ω: ±0.0025% RD
Reference Characterizations	ITS-90, CVD, IEC-751
Reference Measurement Capability	4-wire PRT
	6-pin lemo smart connector and Quick-Push connectors to accept
Reference Probe Connection	banana, mini-banana, large & small spade lug and bare wire
	connections
RTD Channels	2 channels. Both accept 2, 3, or 4-wire RTDs
DTD Macaurament Accuracy (aval concer)	0Ω to 25Ω: ±0.002Ω
RTD Measurement Accuracy (excl sensor)	25Ω to 400Ω: ±0.004% RD
Compliance	400Ω to 4KΩ: ±0.005% RD
RTD Measurement Resolution	0.1mΩ

RTD Measurement Resistance Range	0Ω to 4ΚΩ
RTD Characterizations	PT10, PT25, PT50, PT100, PT200, PT500, PT1000, CU10, CU50, CU100, NI100, NI120
RTD Connection	Quick-Push connectors accept banana, mini-banana, large & small spade lug and bare wire connections
TC Channel	2
TC Measurement Channels	Accepting S, R, K, B, N, E, J, T, C, D, G, L,and U
TC Range	–75 mV to 75 mV
TC Resolution	0.1μV
TC Voltage Accuracy	0.01% RD + 5 μV
Internal CJC Accuracy	±0.2°C (ambient from 0°C to 50°C)
Current Range	–30 mA to 30 mA
Current Accuracy	0.01% RD + 2 μA
Current Resolution	0.1 μA, Input Impedance: < 10Ω
Voltage Range	-12 V to 12 V and -30 V to 30 V
Voltage Accuracy	±0.01% RD + 0.6 mV
Voltage Resolution	0.1 mV; Input impedance: >1MΩ
Switch Test	Mechanical or Electrical
DC 24V Output	24 V ±0.5 V, MAX 60 mA
Hart Communicator	Read, configure and calibrate HART devices - DD files updated
Hart Communicator	periodically Optional - (order ADT875PC)
	Up to 1,000 tasks which store up to 10 results each containing as
Documentation	found and as left data. Snap shot feature allows for screen captures.
	Records auto step and ramp functions.

	ADT878 (PC)-160: ±0.005°C/°C
	ADT878 (PC)-425/700: ±0.005°C/°C
Temperature Coefficient 0% to 12% and 22% to	Ref Readout: ±1 ppm FS/°C
Temperature Coefficient 0°C to 13°C and 33°C to 50°C	RTD Readouts: ±1 ppm FS/°C
50 C	TC Readouts: ±5 ppm FS/°C
	Current: ±5 ppm FS/°C
	Voltage: ±5 ppm FS/°C

1.8 Certification Standards and Mechanical Properties

Table 6 Certification Standards and Mechanical Properties

	ESD immunity	Conta	ct 4VK,Air 8KV
	Radio frequency electromagnetic radiation immunity	10V/m (80MHZ~1GHZ) /3\ (2GHZ~2.7GHZ)	V/m (1.4GHZ~2GHZ) /1V/m
	Conductive disturbance	Power port: 3	V/m(150kHZ~80MHZ)
EMO D'anti	immunity of RF field induction	Signal port: 3	V/m(150kHZ~80MHZ)
EMC-Directive	Voltage sag	0% 1 Period、40%	% 10 Period、70% 25 Period
	Short break	09	% 250 Period
	Disturbance Resistance of	1KV (Signal port)	5kHz/100kHz,1min
	Electric Fast Instantaneous Pulse Group	2KV (Power port)	5kHz/100kHz,1min
	Surge immunity	1KV (Line to line	e) /2KV (Line to ground)

	Radiation emission	level B
	Conductive emission	level B
	Inculation	ADT878-160: L/N - FG 1.5V, BI L/N - OP 3kV,PI
LVD- Directive	Insulation	ADT878-700: L/N - FG 1.5kV ¹ , BI L/N - OP 3kV ¹ ,PI
	Insulation resistance	1KV testing condition, > 1GΩ
	Vibration test	2g, High frequency: 10~500HZ, 2 surfaces/30 mins
Mechnical	Vibration test	2g, Low frequency: 5~200HZ, 2 surfaces/30 mins
Properties Testing	Impact testing	5g, 100 times
	Drop test	1m with package

^{1 -} This parameter is provided by the AC/DC SPS, according to the EN 60950-1 approval, 1 kV insulation protection measures were added.

2. Display and Functional Operation

2.1 Main Operational Interface

The main operational interface utilizes a dual-screen display, the measured quantity channel at the top of the screen and the temperature output channel at the bottom, as shown in Figure 2.

(1) Status Bar: Includes date and time, cloud service connection status (1), 24V power status (24), diagnose

center ①, screenshot ②, external device measurement channel status ②, high temperature warning and system menu icon .

Note: All icons (except date and time and cloud service function) on the status bar can be selected via the touch screen to manage and select options.

- (2) DUT Channels: including sensor type choosen, measurement project setting, automatic cold junction(only supports TC measurement), thermoelectric protential measurement data (Only support TC measurement), real-time data of electrical measurement and data analysis (need to set);
- (3) Temperature output channels: including target temperature point setting 10.00, real-time temperature reading, and heating switch .
 - ♦ When a standard thermometer is connected, the calibrator will allow the user to select the external probe as the temperature control sensor, the external temperature control icon and external temperature setting value 🖾 0.00 will be displayed on the screen at the same time.
- (4) Lock screen: Click the main menu icon 😑 and select lock screen. After entering the lock screen state,

only the unlock button (a) can be used.

◆ Unlock: Under the lock screen status, click the unlock button ⑥ in the upper right corner

2.2 System Temperature Unit Settings

System temperature display units can be changed through the system menu or on the main screen, the dry well system will change temperature units automatically, except for existing sensors and DUT information.


1. Main Menu:

Press \bigcirc on the top right corner of the screen \rightarrow "Personalization" \rightarrow "Temperature Unit" \rightarrow Select temperature unit.

2. Main Screen:

Press the current temperature unit on the display to select the desired temperature unit.

Temperature Output Window

Figure 2 Main Screen

2.3 Temperature Output

2.3.1 Temperature Output Settings

Press the icon on the left of the temperature display screen to enter the setting menu. This menu includes control parameters and reference parameters. The user can switch through the top of the screen and set the following parameters:

(1) Control Parameters

Table 7 Temperature Output Settings

Subject	Valid Value	Explanation
Stability Tolerance	0.01-10.00	One of the conditions for temperature control and stability. The condition is met when temperature varies within this range. Unit: °C
Stabilazation Time	1~120	One of the conditions for temperature control stability. The condition is met when the stabilized time of temperature control exceeds the set value. Unit: min
Set Point Tolerance	0.00~10.00	One of the conditions for temperature control stability. The condition is met when the difference between the measured temperature and the target value is within this range. Unit: °C
Temperature Control Rate	0.01~20.000	Choose max or customize the temperature Scan rate. Customized rate is indicated on the process bar. Unit: °C/min
Set Point Limit	Enable/disable	Limit the range of temperature control
Set Point Range (When set point limit is enabled)	Depends on calibrator model and temperature unit	The temperature will not exceed the upper and lower limits after setting.

(2) Standard Parameters

Table 8 Standard Parameters

Subject	Valid Value	Explanation	
Choose REF	INT/EXT	Choose the temperature controlling sensor	
Auto choose Ext	On/Off	The Ext will be set as controlling sensor when it's setting ON	
controlling sesnor	On/Oil		
	Ir	nternal Sensor	
Resolution	1, 0.1, 0.01	Temperature display resolution	
Sensor Signal	Read only	Measured temperature of internal sensor	
Differential	Read only	Measured temperature of internal sensor	
temperature	Read Only	Measured temperature of internal sensor	
	External Sensor		
Resolution	1, 0.1, 0.01, 0.001	Temperature display resolution	
Sensor Signal	Read only	Measured temperature of external sensor and resistance value	
Sensor Information	Read only	Information of external sensor	

2.3.2 Target Temperature Input:

Click target temperature 🍑 real-time temperature data area, then input the target temperature value through the

numeric keyboard. The target set point should be set within the temperature range above the screen, which is restricted by different model numbers and customized set points. Press enter or press Θ to confirm. Temperature control of the calibrator will start automatically.

2.3.3 Start/Pause Temperature Control:

Temperature control can be initiated or paused by pressing START ① or PAUSE ③ on the right of the calibrator temperature display screen.

2.3.4 Temperature Control Stabilization:

Temperature control will stabilize when stabilization time and target deviation are met. The display value will turn green accompanied by a beep when the unit is stable.

2.4 DUT Measurement

2.4.1 DUT Settings

Click icon on the left side of DUT channel (when CH1 is associated with the CH2, testing projects of two

channels are the same) or click icon (when CH1 is independent with CH2, testing project of two channels can be different), three sections were separated when entered configuration display, which include DUT channel setting, testing sensor and the electrical signal.

Table 9 DUT Settings

Subject Valid Value		Description	
	Channel settings		
CH1 & CH2	Association (Control of the As	Choose if the testing project of two channels are same or not :association: same / independent different	
CH1 & CH2 (association enable) CH1 & CH2(independent enable)	RTD, TC, mA, mV, switch, HART	Choose DUT Measurement Type	
CH2 testing project (independent enable)	RTD, TC, mA, mV, switch	DUT Measurement Type	
Sensor testing			
Resolution	1,0.1,0.01,0.001	Temperature display resolution	
Stability Tolerance	≥0.005	One of the conditions for temperature control and stability. The condition is	

		met when temperature varies within this range. Unit: °C
Stabilization Time	1~120	One of the conditions to for temperature control and stabilization. The condition is met when the stabilized time exceeds the set point. Unit: min
Electrical signal		
mA & V resolution	1, 0.1, 0.01, 0.001, 0.0001	Current and voltage display resolution
RTD resolution	1, 0.1, 0.01, 0.001, 0.0001	RTD display resolution

Click to save changes.

2.4.2 Thermal Resistance (RTD) Measurement

(1) Connection

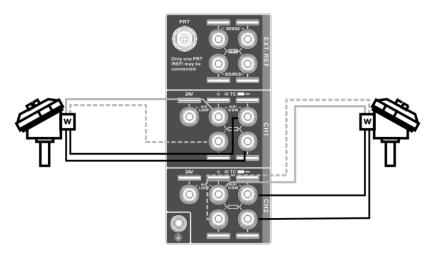


Figure 3 RTD Connection

(2) Measurement settings

Click the on the left side of DUT channel (when CH1 is associated with the CH2) or click the CH2 lcon(when CH1 is independent with CH2), choose CH1, CH2 or CH1&CH2 to enter channel settings display, click "Measurement" and choose RTD, then return to the channel settings screen.

A: Sensor type

Click sensor type entering choose screen.

♦ Standard type Sensor

Users can directly use the added sensors in the sensor library.

♦Custom sensor

Click right icon (2) to enter sensor add page, please refer to section 3.2 sensor library.

B: Wiring selection

Table 10 RTD wiring selection

Tallotte it a real figure in the second seco		
Project	Value	Description
Wiring selection	2,3,4	RTD

C: Starting measurements

After sensor and limit selection, click on the lower right icon \bigcirc , then turn back to setup interface.

click icon again, system jump to main screen for measuring.

If RTD connection error occures, a red "-----" will be shown on the display.

2.4.3 Thermal Couple (TC) Measurement

(1) Connection

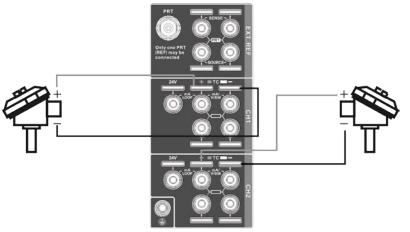


Figure 4 TC Connection

(2) Measurement Settings

Click icon an on the left side of DUT channel (when CH1 is associated with the CH2) or click icon (when CH1 is independent with CH2), choose CH1, CH2 or CH1&CH2 to enter the channel settings display, click

"Measurement" and choose TC, then turn to channel setting display.

◆ TC Type

Click sensor type selection screen.

◆ Sensor Type

System supported sensors are as follows:

Mv, S, R, B, K, N, E, J, T, C, D, G, L, U, LR, A, $10\mu V/^{\circ}C$, $1mV/^{\circ}C$

◆ Cold Junction Type

Table 11 Cold Junction Type

Subject	Valid Value	Explanation
Cold Junction Type	INT/EXT	INT. means using dry well internal sensor as the cold junction reference, EXT means inputting a custom value as cold junction reference. Note: There is no need to choose the cold junction type when mV is selected as the sensor type.
Ext CJC value (when selecting "EXT")	Numeric Content	Set customer value for the cold junction compensation value

(3) Starting a Measurement

After selecting the sensor type and the cold junction type, the system will jump back to the checked setting interface.

Continue to click the icon \bigcirc on the lower right corner, the system will return back to the main page and wait for the measurement to start.

If the thermocouple (TC) line is connected incorrectly, the detected channel at the top of the main interface displays a red "-----" icon with a prompt tone.

For the temperature output operation, please refer to Chapter 2.3.

2.4.4 Electric Current (mA) Measurement

(1) Wire Connection of Electric Current (mA) Measurement

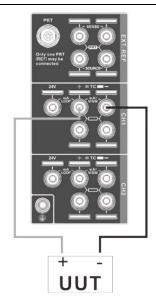


Figure 5 Connection way of Electric Current(mA) Measurement

(2) Measurement Settings

Click icon and on the left side of DUT channel (when CH1 is associated with the CH2) or click icon (when CH1 is independent with CH2, choose CH1, CH2 or CH1 & CH2 to enter the channel settings display, click "Measurement" and choose mA, then return to channel settings screen.

(3) Start Measurement:

Click on the lower right corner, the system will return to the main page and wait for the measurement to start:

For the temperature output operation, please refer to Chapter 2.3.

- 2.4.5 Voltage (V) Measurement
- (1) Wire Connection

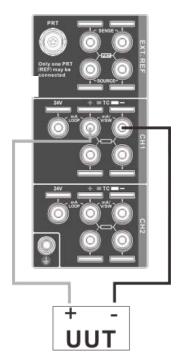


Figure 6 Connection Diagram for Voltage Measurement

(2) Measurement Settings:

Click icon (a) on the left side of DUT channel (when CH1 is associated with the CH2) or click icon (b) (when CH1 is independent with CH2), choose CH1, CH2 or CH1&CH2 to enter the channel settings display, click "project" and choose V, then turn to channel setting display.

Table 12 Voltage Measurement Range Selection

Subject	Effective Value	Explanation
Range	12V, 30V	Select voltage measurement range

(3) Start Measurement

Click on the lower right corner, the system will return back to the main screen and wait for the measurement to start:

For the temperature output operation, please refer to Chapter 2.3.

2.4.6 Switch Test

(1) Connection

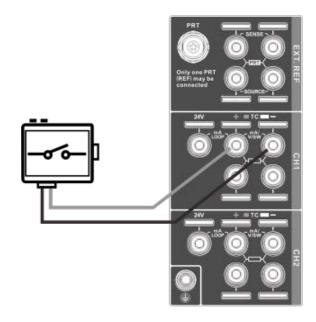


Figure 7 Connection Diagram for Switch Testing

(2) Measurement Settings:

Click icon on the left side of DUT channel (when CH1 is associated with the CH2) or click icon (when CH1 is independent with CH2), choose CH1, CH2 or CH1 & CH2 to enter the channel settings display, click

"Measurement" and choose V, then turn to channel setting display.

Table 13 Switch Type Selection

Subject	Valid Value	Comment
Switch	Dry contact, Wet contact, PNP,	Temperature
Туре	NPN	switch type

(3) Start Measurement

Press on the lower right and the unit will return to the main screen and wait for the measurements to start;

Please see section 2.3 for more information regarding the temperature output.

2.4.6 HART Transmitter Measurement

(1) Cable connection

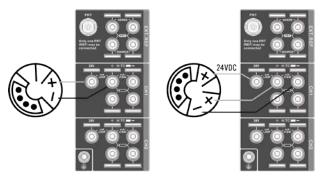


Figure 8 HART Transmitter Connection Diagram

♦ Only CH1 supports HART Transmitters

(2) Transmitter Settings:

Click icon on the left side of DUT channel (when CH1 is associated with the CH2) or click icon (when CH1 is independent with CH2), choose CH1, CH2 or CH1&CH2 to enter the channel settings menu, click "Measurement" and choose HART, then return to channel settings screen.

(3) Search

Click the right ••• of the DUT channel

Click "Search" (1), the system will automatically search and list the transmitter, if users need to search again, please click (1) on the right side of the screen to start searching:

After the search is complete, click on the name of the desired transmitter and click $\mathfrak D$ on the bottom right corner of the screen after checking it:

(4) Settings (some functions are HART only)

Click ••• on the right side of DUT channel and select " (to enter the transmitter setting page:

◆Device Information:

Table 14 HART Device Information

Subject	Valid Value	Explanation
Manufacturer	Read only	Manufacturer of the transmitter
Device Type	Read only	Type of the transmitter
S/N	Read only	Serial number of the transmitter
Label	Alphanumeric content (8 max length)	Custom label of the transmitter
Date	2000/1/1~2099/12/31	Date setting
Write-protect	Read only	Protection type
Information	Alphanumeric content (20 max length)	Custom information
Description	Alphanumeric content (20 max length)	Custom description
Final Assembly	Support numeric input, no more than 20	The final assembly number of the transmitter
Number	characters	
Leading Character	5~20	The leading character number of the transmitter
Number	3~20	
General Version	Read only	General version of the transmitter
Software Version	Read only	Software version of the transmitter
Hardware Version	Read only	Hardware version of the transmitter
Device Version	Read only	Device version of the transmitter

♦Sensor

Check the information on sensor, upper-lower limits, and the minimum range.

◆Device Output:

Table 15 HART Device Output

Subject	Valid Value	Comment
Master Variable/Range Units	°C, °F, °R, K	Measurement unit of the transmitter
Lower Limit of PV Range	Support numeric input, lower limit	Lower limit of the master variable
	expanding 10%	
Upper limit of PV Range	Support numeric input, upper limit	Upper limit of the master variable
	expanding 10%	
Transform Function	Linear, Root	Transform function of the transmitter
Alarm State	Read only	Alarm state of the transmitter
Damping	Support numeric input, ≥0	Damping time
Poll Address	0~15	Poll address of the transmitter
Burst Mode	Disable, Enable	Burst mode state
Burst Command	1, 2, 3	Burst command depends on different
		transmitters

(5) Diagnose / Service:

Press the icon on the right of DUT measurement channel screen, select () "Diagnose/Service" to enter the transmitter setting screen.

A: Current loop test:

- ◆ This function is enabled if and only if the transmitter polling address is 0.
- ◆ The current loop test allows the user to compare and calibrate the transmitter current output signal and the calibrator calibrator current measurement signal. If the difference between the two is greater than the tolerance, it is recommended to adjust.
- ◆ Input through the numeric keyboard or click the "Fetch" button to intercept the current measurement signal of the calibrator calibrator.
- ◆ After pressing the Enter or Confirm button, the calibrator calibrator will output the current value and current measurement value to the transmitter.

B: D/A Adjustment:

- ◆ This function will be enabled only when the search address of the transmitter is 0.
- ◆ Customers can adjust the current output of the transmitter at zero and full scale through D/A adjustment.

D/A Zero

1) Intercept the current measurement signal (4mA as the typical value) through the numeric keyboard or

- press the button "Fetch".
- 2) Press enter or pressing the confirm button, the calibrator will send instruction to the transmitter to adjust the current output at zero.

D/A Gain

- 1) Intercept the current measurement signal (20mA as the typical value) through the numeric keyboard or press the button "Fetch".
- 2) Press enter or pressing the confirm button, the calibrator will send instruction to the transmitter to adjust the current output at full scale.

(6) Process

Press ••• on the right of DUT measurement channel screen and select "Process Quantity" to enter the transmitter setting screen, which allows the customers to select the process variable of the transmitter:.

Table 16 HART Device Process Explanation

Subject	Explanation
Maser	The unit of the master variable depends on the setting unit of the
Variable	transmitter. Please refer to transmitter output setting for details.

Output	Output current of the transmitter, unit: mA
Current	
Doroontogo	The percentage of temperature readout in the temperature range of
Percentage	the transmitter
Loop	Loop current of the transmitter, unit: mA
Current	

2.5 Hart Communicator

The Calibration Calibrator provides full HART communicator functions. Using the original HART DD file, it can be used to complete the maintenance and debugging of all HART pressure equipment, including parameter modification, fault diagnosis, daily maintenance and calibration etc, Because the operation of the Communicator on the HART device depends on the DD file, the operation methods of different HART devices are quite different, so please refer to the instruction manual of the HART device before using the Communicator function.

Note: The Calibration Calibrator always acts as the master during communication with the HART device, so in order to avoid harm to the control system, the HART device must be detached from the control

system before using the calibrator to connect the HART device.

2.5.1 HART Connection and Search

- ◆ Click DUT testing channel left icon (→) in the main operation interface, select the mode ⊕ to start the HART function, the calibrator will automatically switch to the power supply configuration selected by the last HART (the default is the internal power supply internal resistance connection), and set "0" Search by address. After searching for the HART device, it will automatically connect and display its indication.
- ◆ Press ••• to select search to enter HART device search screen, type "0-15" for searching.

2.5.2 HART Communicator Operations

- ◆ Read the parameters in HART and modify them. The root directory options are 1 ~ 4 items, depending on the HART device, the parameters that have been modified but not written to HART are highlighted in yellow in the list, and you can click to complete the writing to HART operation;
- ◆ Provide real-time display of temperature value and loop current value of dry well at the bottom of the interface of hand operator;

- ◆ Click ← and ⑤ on the right side of the screen to view the communication status and device status respectively. After entering, the hollow circle on the right side of the list indicates that there is no abnormality, otherwise it indicates that the item is abnormal.
- ◆ Click non the right side of the screen to return to the main interface of the device. Click non the upper right corner of the screen to return to the HART Communicator again.

3. Settings

Click upper right icon (to enter system configuration:

3.1 Communication Settings

3.1.1 Ethernet

Connect the calibrator to a computer through the Network port.

Table 17 Ethernet Address Acquisition methods

Subject	Valid Value	Explanation

Address Acquisition	DHCP / Manual	Choose Calibrator address for acquisition method
---------------------	---------------	--

- ◆ Port No. and physical address are factory settings, which can not be changed;
- ◆ When the DHCP mode is selected, the contents in the table below are automatically assigned by the system and become read-only items.
- ◆ When the manual method is selected, the following table needs to be filled in manually.

Table 18 Ethernet Address Manually Settings

Subject	Valid Value	Explanation
IP Address	0.0.0.0 ~ 255.255.255.255	Calibrator IP address
Subnet Mask	0.0.0.0 ~ 255.255.255.255	Calibrator subnet mask
Gateway	0.0.0.0 ~ 255.255.255.255	Calibrator gateway

Click on the lower right corner of the screen to confirm the settings.

3.1.2 Wi-Fi

Connect the calibrator to a computer through Wi-Fi.

Table 19 Wi-Fi Settings

Subject	Valid Value	EXplannation	
WLAN	On / Off	Enable or disable Wi-Fi communication function	

WI-FI	Depends on network environment	Select WI-FI access point	
Adavanced Option DHCP/Manual		Select calibrator address acquisition way	

- ◆ The port number and physical address are factory set and cannot be changed.
- ◆When the DHCP option is selected as the advanced option, the following table is automatically assigned by the system and becomes a read-only item.
 - ◆When selecting the manual method for advanced options, the following table needs to be filled in manually.

Table 20 Wi-Fi Communication Manually Settings

, ,					
Subject	Valid Value	Explanation			
IP Address	0.0.0.0 ~ 255.255.255.255	Calibrator IP address			
Subnet Mask	0.0.0.0 ~ 255.255.255.255	Calibrator subnet mask			
Gateway	0.0.0.0 ~ 255.255.255.255	Calibrator gateway			

Click on the lower right corner of the screen to confirm the settings.

The wireless communication settings take effect directly, without confirming the operation, click on the upper right corner of the screen to return to the previous menu.

3.1.3 Bluetooth

Connect calibrator with computer through Bluetooth.

Table 21 Bluetooth Settings

Subject	Valid Value	Explanation
BT Name	Read only	Calibrator Bluetooth name
BT Status	On / Off	Enable or disable Bluetooth function
MAC	Read only	Device Physical Address(Displayed only the Bluetooth is on)
Disonnection	Disconnection	Disconnect WiFi device with Furnance

Bluetooth settings are applied immediately, press 🕤 on the top left corner for previous menu.

3.2 Sensor Library

The Calibration Calibrator includes a sensor library. Sensor information can be stored in the library for future use. Sensor types are classified into six categories: smart sensors, ITS-90, standard thermocouples, CVD, RTD and NTC.

Click to enter the sensor list under the sensor type, and then click the sensor to enter the selected sensor information page.

3.2.1 Management Functions

(1) Display Settings

Press (%) on the bottom right corner of the screen to view the sensor list display content.

Table 23 Sensor Display Settings

Subject	Valid Value	Comment	
		Select parameter display mode:	
Parameter display	Scientific / Decimal	Scientific: 1.1*10 ⁻²	
		Decimal: 0.011	
RTD display settings			
ITS-90 display settings			
STD display settings	Model & Name / Serial Number	Select display contents	
CVD display settings	Model & Name / Senai Number	Select display contents	
NTC display settings			
Smart sensor display settings			

(2) The interface of Sensor List

Management function Icons in the sub-menu are listed below:

Table 24 The interface of sensor list

Icon	Explanation	Intelligent	ITS-90	Standard TC	CVD	Thermal	Thermistor
		Sensor				resistor	

(+)	Add a new sensor	•	•	•	•	•	•
<u>(a)</u>	Quickly add new sensor	•	•		•		•
(2)	Import selected sensor information into connected intelligent sensor	•	•		•		
(1)	Delete one or all sensors	•	•	•	•	•	•

Sensor information

Table 25 Sensor information

Icon	Explanation	Intelligent Sensor	ITS-90	Standard TC	CVD	Thermal resistor	Thermistor
(Edit sensor	•	•	•	•	•	•
(Delete sensor	•	•	•	•	•	•
Θ	Import selected sensor information into connected intelligent sensor	•	•		•		

3.2.2 Intelligent Sensor

Table 26 Sensor basic information

Subject	Valid Value	Explanation
Type/Name	Alphanumeric content (14 max length)	Sensor type and name information
Serial Number	Alphanumeric content (14 max length)	Sensor serial number
Sensor type	ITS-90 / CVD	Intelligent sensor type ,if we select different sensor type will affect the setting of parameters, as shown in the below table
Temperature Range	Depend on sensor type	Sensor temperature range: unit: °c
Calibration date	2000/1/1~2099/12/31	Sensor calibration date
Date for next calibration	2000/1/1~2099/12/31	Sensor calibration expiration time
Note	Alphanumeric content (14 max length)	Sensor note information

The parameter setting item when choosing ITS-90 as sensor type .

Table 27 Sensor parameter

ITS-90							
Item	Item Value						
Negative temperature parameter	a4, b4: (-200~0) °C	Usually system will choose					
Negative temperature parameter	a5, b5: (-40~0) °C	negative temperature range					
selection	N/A	parameter automatically					
Docitive temporature regresses	a6, b6, c6, d, W660.323:	Usually system will choose					
Positive temperature parameter selection	(0~960) °C	positive temperature range					
Selection	a7, b7, c7: (0~660) °C	parameter automatically					

	a8, b8: (0~420) °C	
	a9, b9: (0~232) °C	
	a10: (0~157) °C	
	a11: (0~30) °C	
Rtp (Ω)	Numbers	Please refer to parameter value
a4		
b4		
a6		
b6	Numbers	
c6		
d		
W (660.323°C)		

(2) The parameter setting item when choosing CVD as sensor type .

Table 28 Sensor parameter

	CVD	
Item	Value	Description
R0 (Ω)	Numbers	
А		Please refer to parameter value
В	Numbers	
С		

3.2.3 ITS-90 Sensor

Please refer to table 26 and 27.

3.2.4 CVD Sensor

Please refer to table 26 and 28.

3.2.5 Standard TC

Table 29 Sensor Based Information

Subject	Valid Value	Description
Type/Name	Alphanumeric content (14 max length)	Sensor type and name information
Serial Number	Alphanumeric content (14 max length)	Sensor serial number
Temperature range	Depends on the temperature units	Sensor measurement range, Unit °C
Reference TC	S, B	Choosing different standard thermocouple types will affect the parameter setting. See the following table for specific parameters
Calibration date	2000/1/1~2099/12/31	Sensor calibration date
Date for next calibration	2000/1/1~2099/12/31	Sensor calibration expiration time
Note	Alphanumeric content (14 max length)	Sensor note information

Table 30 Type S Thermocopule Parameter Settings

Parameter type	Valid value	Description
	A	Parameters for the sensor calculation
a_b_c	В	formula, please refer to the sensor
	С	calibration certificate for the values
	mV(Zn_419.527 °C):	
	(3.4393~ 3.4547)mV	
Zn_Al_Cu	mV(AI_660.323 °C):	mV signal output by a sensor at a specified
ZII_AI_Cu	(5.84945~ 5.87055)mV	fixed point
	mV(Cu_1084.620 °C)	
	(10.56~ 10.59)mV	
Zn_Sb_Cu	mV(Zn_419.527 °C):	
	(3.4393~ 3.4547)mV	
	mV(Sb_630.630 °C)	mV signal output by a sensor at a specified
	(5.54245~ 5.56355)mV	fixed point
	mV(Cu_1084.620 °C)	
	(10.56~ 10.59)mV	

3.2.6 RTD

Table 31 RTD Parameter Settings

Subject	Valid Value	Description	
Type/Name	Alphanumeric content (14 max length)	TRD type and name information	
Serial Number	Alphanumeric content (14 max length)	TRD serial number	

Temperature range	Depends on the temperature units	TRD measurement range, Unit °C
R0 (Ω)	Number	TRD RO value
Calibration date	2000/1/1~2099/12/31	TRD calibration date
Date for next calibration	2000/1/1~2099/12/31	TRD calibration expiration time
Note	Alphanumeric content (14 max length)	TRD note information

3.2.7 Thermistor

Table 32 Thermistor Parameter Settings

Item	Effective value	Description
Model/name	Numbers, letters, supports up to	TRD type and name information
Wodel/Hame	14 input	
Serial NO.	Numbers, letters, supports up to	TRD serial number
Senai NO.	14 input	
Temperature Range	Depend on conser type	TRD measurement range,
remperature Kange	Depend on sensor type	Unit °C
NTC Type	NTC / Steinhart-Hart	TRD RO value
Calibration Date	2000/1/1~2099/12/31	TRD calibration date
Next Calibration Data	2000/1/1~2099/12/31	TRD calibration expiration time
Danada	Numbers, letters, supports up to	TRD note information
Remarks	14 input	

Choose NTC as Thermistor

Table 1 NTCParameter settings

Item	Effective value	Description
Rtn		Please refer to parameter value
Tn	Digit	
β		

Choose Hart as parameter setting item of thermistor

Table 34 Stein-Hart Thermister Parameters

Item	Effective value	Description
а	Digit	The thermistor calculation
b		formula uses the parameters, the
С		value please refer to the
		thermistor calibration certificate

3.3 Data Protection

The calibrator provides data protection function. Users can customize data protection password under this menu and set password protection enabling items.

Table 35 Data Protection Page

Item	Effective value	Explanation
Editing password	Number, supports up to 20 digits	Set the data protection password, the factory default password is: 123456
Mission	Enable/Disable	Enable or disable the task data password protection function. Startup: password is required to delete task data.
Sensor Bank	Enable/Disable	Enable or disable the password protection function of the sensor library. Startup: Password is required to delete sensor library data.
Factory Data Reset	Enable	Only show not editable

Note: Editing the password will affect the access password for power grid specifications, system calibration, and factory reset.

3.4 ACloud Service

(When opened, the status bar displays the cloud service icon)

Upload data to cloud server

Table 36 ACloud Service

Item	Effective value	Explanation
Enable	Open/Close	Open or close Cloud service
		function
Acloud State	<u>(1)</u>	Acloud State
Additel Link	Linkage Information	Linkage Information of cloud
		service

3.5 System Service

3.5.1 System Calibration

The calibrator provides users with a calibration function. Entering the system calibration page requires a password. The password can be customized. For details, please refer to Chapter 3.4 Data Protection. The factory default password is: 123456

After entering the system calibration page, the following items can be calibrated:

(1) Self-calibration of temperature indication

Select "Temperature display value self-calibration" to enter the temperature display value self-calibration interface,

the user can perform "manual calibration" or "automatic calibration" as needed, or to check the data before and after calibration according to the left side "As found" and "As left".

A. Manual calibration

- 1) If you need to modify the calibration point, click (2) to enter a custom calibration point;
- ◆ The indicating temperature and standard temperature value corresponding to each calibration point need to be obtained by the user outside the temperature indicating value self-calibration interface;
- ◆ The number of calibration points cannot be less than 2;
- ◆ The minimum interval between calibration point values must be greater than or equal to 10% of the total range.
- 2) Input the indicated temperature and standard value of each point one by one;
- 3) Click on the lower right corner to save the data. The calibration data is saved as user calibration data. The calibration data can be viewed in the temperature calibration history.

B. Automatic calibration

1) If you need to modify the calibration point, click to enter a custom calibration point;

- ◆ The number of calibration points cannot be less than 2;
- ◆ The minimum interval between calibration point values must be greater than or equal to 10% of the total range.
- 2) Click to enter the temperature display for self-calibration interface, click Start to start the automatic calibration wizard, the calibrator will automatically control the temperature according to the calibration point;
- 3) Click on the lower right corner to save the data. The calibration data is saved as user calibration data. The saved calibration data can be viewed in the temperature calibration history.

(2) Electrical Calibration

The calibrator can calibrate the electrical measurement data of the standard channel, channel one and channel two.

A: Standard Channel

Click the target external standard to enter the external standard calibration interface:

- ◆ Click on the right to restore the factory settings of external sensors.
- ◆ The number of external sensor calibration points cannot be changed, but you can manually modify the

calibration points by clicking the calibration point list on the left side of the calibration list.

- ◆ Click
 ◆ Click
 ◆ during the calibration process to terminate the calibration procedure, the calibration data will not be saved.
- ◆ The latest calibration time is displayed below the calibration list.

Calibration process:

- 1) Click to start the calibration procedure, and the system will automatically collect data until manually enter the next calibration point.
- 2) Click () to start to calibrate the next calibration point, or click () to return to the previous calibration point to recalibrate.
- 3) After the calibration point is over, the system will automatically prompt whether to save the calibration data, or or click (a) on the right to save the calibration data.
- B: Channel One & Channel Two
- ±30 mA measurement

Calibrate two-channel mA measurement

- ◆Click ② on the right to restore the factory setting of ±30 mA measurement.
- ◆The number of ±30 mA measurement calibration points cannot be changed, but you can manually modify the calibration points by clicking the calibration point list on the left side of the calibration list.
- ◆Click during the calibration process to terminate the calibration procedure, the calibration data will not be saved.
- ◆Click not on the right to cancel reset.

Calibration process:

- 1) Click the calibration start button **()** to start the calibration procedure, and the system will automatically collect data until you manually enter the next calibration point.
- 2) Click to start the calibration of the next calibration point, or click to return to the previous calibration point to recalibrate.
- 3) After all calibration points are over, the system will automatically prompt whether to save the calibration data, or

click (a) on the right to save the calibration data.

C: TC Interface Measurement (±75 millivolts)

- ◆Click ⑤ on the right to restore the factory settings of TC interface measurement (±75 mV).
- ◆The number of calibration points for TC interface measurement (±5 mV) cannot be changed, but you can manually modify the calibration points by clicking the calibration point list on the left side of the calibration list.
- ◆Click Soduring the calibration process to terminate the calibration procedure, the calibration data will not be saved.
- ◆Click ��on the right to cancel reset.

Calibration process:

- 1) Click the calibration start button **()** to start the calibration procedure, and the system will automatically collect data until you manually enter the next calibration point.
- 2) Click to start the calibration of the next calibration point, or click to return to the previous calibration point to recalibrate.

3) After all calibration points are over, the system will automatically prompt whether to save the calibration data, or click (a) on the right to save the calibration data.

D: ±12V & ±30V Measurement

- ◆Click ⑤ on the right to restore the factory setting of ±12V or ±30V measurement.
- ◆The number of ±2V or ±30V calibration points cannot be changed, but you can manually modify the calibration points by clicking the calibration point list on the left side of the calibration list.
- ◆Click during the calibration process to terminate the calibration procedure, the calibration data will not be saved.
- ◆Click not the right to cancel reset.

Calibration process:

- 1) Click the calibration start button to start the calibration procedure, and the system will automatically collect data until you manually enter the next calibration point.
- 2) Click 🖲 to start the calibration of the next calibration point, or click 🖲 to return to the previous calibration

point to recalibrate.

3) After all calibration points are complete, the system will automatically prompt whether to save the calibration data, or click (a) on the right to save the calibration data.

E:400 Ω (4W) & 4000 Ω (4W) Resistance

- ◆Click ⑤ on the right to restore the resistance calibration factory settings.
- ◆The number of resistance calibration points cannot be changed, but you can manually modify the calibration points by clicking the calibration point list on the left side of the calibration list.
- ◆Click ⑤ during the calibration process to terminate the calibration procedure, the calibration data will not be saved.
- ◆The last calibration time is displayed below the calibration list.

Calibration process:

1) Click the calibration start button to start the calibration procedure, and the system will automatically collect data until you manually enter the next calibration point.

- 2) Click to start the calibration of the next calibration point, or click to return to the previous calibration point to recalibrate.
- 3) After all calibration points are over, the system will automatically prompt whether to save the calibration data, or click (a) on the right to save the calibration data.

F:Cold Junction Calibration:

- ◆ Click ② on the right to restore the resistance calibration factory settings.
- ◆ Click ★ during the calibration process to terminate the calibration procedure, the calibration data will not be saved.
- lacktriangle Click the sensor type to select the cold end sensor type. The cold end types available for the calibrators are: mV, S, R, B, K, N, E, J, T, C, D, G, L, U, LR, A, 10μ V/°C

Calibration process:

1) Click the standard value display number to adjust the standard value, and enter the reference standard temperature of the environment where the cold junction is currently located;

- Click (a)on the lower right corner to save the cold junction calibration data.
- (3) Temperature Indication Calibration (Verification)

Users can calibrate the display temperature.

How to use:

- ◆Enter the page to display "manual calibration" mode and "automatic calibration" mode, the user can click it to enter the corresponding calibration mode.
- ◆Click "Manual Calibration" or "Automatic Calibration" to enter the temperature display self-calibration set point editing interface, the user can click the set point to be modified, and modify it through the numeric keyboard.

Manual mode:

Follow the prompts to connect the standard device, and manually input the corresponding indication values of the calibrator and the standard device at different set points. The data of each point needs to be obtained by the user outside the temperature display value self-calibration interface. The well temperature is not provided in manual mode or automatic temperature calibration mode. On this page, the set point cannot be modified. Please exit to

the temperature display self-calibration homepage to modify the set point and click (a) on the lower right corner to save the data.

Automatic mode:

Follow the prompts to connect the standard, click \bigcirc on the lower right corner to start automatic calibration. Click \bigcirc on the lower right corner to save the data.

(4) Axial Temperature Field Calibration

Users can calibrate the axial temperature field.

How to use:

- ◆Enter the page to display "manual calibration" mode and "automatic calibration" mode, the user can click it to enter the corresponding calibration mode.
- ◆Click "Manual Calibration" or "Automatic Calibration" to enter the temperature field calibration set point editing interface. The user can click the set point to be modified and modify it through the numeric keyboard.
- 1) Manual mode:

Follow the prompts to connect the standard. Manually input the corresponding indication values of the calibrator and standard device at different set points. The data of each point needs to be obtained by the user outside the temperature display value self-calibration interface. The calibrator does not provide automatic temperature control in manual mode. On this page, the set point cannot be modified, please exit to the temperature field calibration homepage to modify the set point. During operation, please adjust the height of the sensor according to the test procedure. Click on the lower right corner to save the data.

2) Automatic mode:

Follow the prompts to connect the standard. In the temperature field calibration setting interface, the length of the temperature sensing section of the standard sensor and the axial temperature field test sensor can be set. In the standard setting interface, you can view and set the parameters of the standard. Click \bigcirc on the lower right corner to start automatic calibration. Click \bigcirc on the bottom right corner to save the data.

(5) Input Verification Certificate Data

Users can manually input the verification certificate data.

How to use:

Enter the interface to display temperature indication calibration (verification), axial temperature field calibration, and all three items.

Temperature display calibration (verification) and axial temperature field calibration

- ◆Click "temperature indication calibration (verification)" or "axial temperature field calibration" to enter the temperature set point editing interface.
- ◆Click the set point that needs to be modified, and it can be modified through the numeric keyboard.
- ◆Click ② on the lower right corner to input the detailed data, and click ⑤ on the lower right corner to save the data after the input is complete.
- ◆You can input the name, operator, remarks, temperature indication calibration (verification) and detailed data of axial temperature field calibration;
- ◆After finishing, click (a) the lower right corner to save the data.
- (6) Temperature Calibration History Record

The user can click to view all the temperature calibration history records, and select the historical calibration data to apply to the calibrator according to the needs.

The temperature calibration history record has 3 parts: manufacturer calibration data, user calibration data and verification data. The differences are as follows:

Table 37 Temperature Calibration History Record

Item	Save	View	Add	Cover	Delete	Explanation
Manufacture's standard	Factory data	_	_	_	_	Factory calibration data
User's standard	Latest time	•	• (User)	•	•	User self-calibration data during the inspection period
Verification Data	Each time a verification is performed, one item will be added to the verification data list	•	 (Third-party verification agency) 	_	٠	Third-party verification data sent periodically

Tip: If the user chooses to apply non-latest verification data as the calibrator system data, the verification data

after the selected data will become invalid data (invalid data can be activated again by clicking to reapply as calibrator system data), the font is grayed out, and all invalid data will be deleted automatically when the verification mode is re-calibrated.

The following information needs to be filled in when storing the verification data:

Table 38 Verification Date Save Settings

Item	Effective value	Explanation		
Name	Numbers, letters and characters up to 10 digits	Verification Date Name		
Operator	Numbers, letters and characters up to 10 digits	Verification Operator Information		
Remarks	Numbers, letters and characters up to 10 digits	Remark Information		

How to use:

- ◆Click and select the required historical data to enter the view page.
- ◆After confirming that the calibration data of the axial temperature field and temperature indication are correct, click at the bottom right corner of the screen (except for the restoration of the manufacturer calibration data,

directly select the manufacturer calibration data, the data will immediately prompt whether to switch to the factory calibration data).

(7) Due Date Reminder

Users can turn on the due date reminder to set the calibration due date

How to use:

- ◆Click the calibration expiration date to edit the detailed expiration reminder time;
- ullet The expiration date setting time range is 2000/1/1 \sim 2099/12/31.
- ◆Click to select the status "enabled" or "disabled".

3.5.2 Factory Reset

The calibrator provides the function of restoring factory settings. To enable this function, you need to enter a password. The password can be customized. For details, please refer to chapter 3.3 Data Protection. The factory default password is: 123456

- ◆Restore factory settings will not restore all the system calibration data. To restore the system calibration data, please refer to section 3.5.1.
- ◆Restore factory settings will not delete user data, including task data, sensor library data, etc.
- ◆After restoring the factory settings and restarting, the user needs to set the time. For details, refer to chapter

3.5.3 Maintenance

The calibrator provides maintenance function. To enable this function, you need to enter a password. The password can be customized. For details, please refer to Chapter 3.3 Data Protection. The factory default password is:

123456

- ◆Click the right side of the maintenance record page to add maintenance information.
- ◆Click "maintenance brief information", "maintenance person" and "maintenance content" to add content.
- ◆Click "Maintenance Date" to modify.
- lacktriangle The expiration date setting time range is 2000/1/1 \sim 2099/12/31.

3.5.4 System Updated

The calibration provides a firmware upgrade function. System upgrades can applied via local U disk or by network.

◆The local U disk upgrade operation needs to use a U disk, and the format of the U disk needs to be FAT16 or FAT32.

Upgrade operation:

A: U disk upgrade

Copy the upgrade file to the root directory of the U disk, then insert the U disk into the USB port on the right side of the calibrator, select "U disk upgrade" on the calibrator upgrade interface, and click \bigcirc to start the automatic upgrade. After a few minutes, the upgrade process is completed, the system will display the upgrade completion message, and automatically restart after confirmation.

B: Remote upgrade

The remote upgrade needs to connect the calibrator to the Internet first, which can be completed by automatic or

manual update.

3.6 Personalization

3.6.1 Temperature Unit

The calibrator provides three temperature units:

°C, °F and K.

After the temperature unit is changed, the other temperature-related parameters will change except for the data in the sensor library and the mission center.

3.6.2 Date and Time

Table 39 Date and Time

Item Effective value		Explanation
Time	00:00 ~ 23:59	Time setting
Date	2000-1-1 ~ 2099-12-31	Date setting
Date Format	Year-month-day / Month-day-year	Date format setting
	/ day-month-year	
Separator	-, /, .	Date separator setting
24 hours	Open/Close	Set the Time to be displayed in
		24-hour or 12-hour format
Time zone	UTC-12:00~UTC+12:00	Set the time zone of the device

3.6.3 Language

The calibrator provides multi-language interface, you can select the available language interface through this menu.

◆After the language interface is selected, the calibrator needs to be restarted to take effect.

3.6.4 Sound

Table 40 Sound Setting

Item	Item Effective value Explanation	
Keypad tone	Open/Close	Enable or disable key tone
Warning tone	Warning tone Open/Close Turn of	
Over range sound	Open/Close	Enable or disable the beep when
Over range sound		the measuring range is exceeded
Volume 0~100 Adjust key tor		Adjust key tone volume, %

3.6.5 Screen Brightness

Tap the progress bar to adjust the screen brightness.

3.6.6 Screen Protector

The calibrator provides a screen protection function. If there is no operation within the set time, the calibrator will

automatically turn off the touch screen to save energy, and touch it again to activate the screen.

The optional range of setting time is: 1 minute, 5 minutes, 10 minutes, 30 minutes, 60 minutes and never.

3.6.7 Display Mode

The calibrator provides two display modes: highlight and normal.

◆After the display mode is selected, the calibrator needs to be restarted to take effect.

3.7 Product Information

Product information is read-only information, divided into two parts: basic information and version information:

- (1) Basic information: including model, serial number and range information.
- (2) Version information: including the main program, system version, control board, electrical test board, WiFi and Bluetooth version information.
- ◆The firmware version information usually refers to the main program version information. If necessary, please provide the main program version information when contacting customer service.

4. Task

The calibrator provides a task function, users can set up calibration tasks according to their needs to realize automatic calibration. In the task function, the user can create or select an existing tested device as the first step of the task start, or create or select an existing test configuration as the first step of the task.

- ◆Under the task menu, you can set the object of the stability judgment condition by clicking the setting button in the lower right corner:
- (1) Standard
- (2) DUTs
- (3) All

4.1 Device Center

Users can manage all inspected equipment in the equipment center.

4.1.1 Device Management

- ◆Click ⊕ on the desired device to read the information about the device. Please refer to chapters 4.1.2 to 4.1.9.
- ◆Click on the right to delete the added test task. The user can select the task to be deleted as needed, and delete it by clicking or delete all test tasks by clicking .
- ♦Click © on the right to search for the added device to be inspected. The search conditions are as follows:

Table 41 The Test Device Search and Find Condition in Task Center

Item	Effective value	Explanation
Туре	Thermal resistance, thermocouple, thermistor, temperature transmitter, temperature switch, glass liquid thermometer, temperature controller, bimetal thermometer, pressure thermometer, transformer winding thermostat, surface thermometer, digital thermometer, double touch Point switch, integrated thermal resistance pointer thermometer, all	Select the device type to be checked, the default is all
Name	Numbers, letters and characters, can support up to 16 inputs	The tested device name
Device	Numbers, letters and characters, can support up to 16	The tesed device serial No.
Serial No.	inputs	
Execution	Yes/No/All	Whether the inspected equipment has performed tasks on the

		calibrator depends on whether
		there is test data generated
	Start Time: 2000-1-1 ~ 2099-12-31	To search the scope of the
Creation Time	Over Time:2000-1-1 ~ 2099-12-31	creation time of the inspected
		device, for example: the
		inspected device created
		between January 1, 2018 and
		December 31, 2018

◆Click on the lower right corner to apply the search and finding criteria and the matched devices will appear in the list. Click on the right to clear the entire search and search criteria that have been entered.

4.1.2 Thermal Resistance

Click on the right to use the sensor information in the sensor library as a template to quickly add thermal resistance parameters.

Table 42 Thermal Resistance to Be Inspected Adding Setting in Task Center

Item	Effective value Explanation	
Name	Numbers, letters and characters,	Name of thermal resistance to be
ivaille	can support up to 16 inputs	inspected.
Device Serial No.	Numbers, letters and characters,	Serial No. of of thermal
Device Serial No.	can support up to 16 inputs	resistance to be inspected.
Location	Numbers, letters and characters,	The location information of the
Location	can support up to 16 inputs	thermal resistance under

		inspection is used to deal with the
		problem of distinguishing multiple
		thermal resistances from different
		departments of the same
		company.
Domorko	Numbers, letters and characters,	Remarks of the thermal
Remarks	can support up to 16 inputs	resistance to be inspected.
		The name of the company from
		which the thermal resistance is
Increation Deportment	Numbers, letters and characters,	inspected is used to deal with the
Inspection Department	can support up to 16 inputs	problem of distinguishing multiple
		thermal resistances from different
		companies.
		The range of the thermocouple to
Range	(-273∼10000) °C	be inspected, the unit can be
		switched
		Accuracy of thermal resistance to
	The calibrator provides several	be inspected
Permission Error	common thermal resistance	For custom settings, please
Permission Error	tolerances, and allows customers	refer to Chapter 4.1.12
	to customize	Accuracy Settings of the
		Device Under Inspection.
Wiring avetem	2/2/4 wiring overtors	Wire system selection of thermal
Wiring system	2/3/4 wiring system	resistance to be inspected
Thermal Pagiatanea Time	Pt series, Cu series, Ni series,	Types of thermal resistance to be
Thermal Resistance Type	CVD	inspected

R0	Digits	Thermal resistance RO value

Click on the lower right corner to save and end the operation of adding thermal resistance.

4.1.3 Thermocouple

Table 43 Thermocouple to be Inspected Adding Setting in Task Center

Item	Effective value	Explanation
	Numbers, letters and	Name of thermocouple to be inspected
Name	characters, can support up to	
	16 inputs	
	Numbers, letters and	
Device Serial No.	characters, can support up to	Serial No,of thermocouple to be
	16 inputs	inspected
Location	Numbers, letters and characters, can support up to 16 inputs	The location information of the inspected thermocouple is used to deal with the user's problem of distinguishing multiple thermocouples from different departments of the same company.
Remarks	Numbers, letters and characters, can support up to 16 inputs	Remarks of the thermocouple to be inspected
Inspection Department	Numbers, letters and characters, can support up to 16 inputs	The name of the company from which the thermocouples are inspected is used to deal with the problem of

		distinguishing multiple thermocouples			
		from different companies.			
Panga	(-273∼10000) °C	The range of the thermocoupleto be			
Range	(-273° 10000) C	inspected, the unit can be switched			
	The calibrator provides several	Accuracy of thermocouple to be			
	The calibrator provides several common thermocouple tolerances, and allows customers to customize	inspected			
Permission error		For custom settings, please refer to			
		Chapter 4.1.12 Accuracy Settings of			
		the Device to be inspected			
Thormogouple type	A、B、C、D、E、F、J、K、L、	Types of thermocouple to be inspected			
Thermocouple type	LR、N、R、S、T、U				
		Select the cold junction compensation			
Cold Junction compensation	INIT/EVE	method of the tested thermocouple,			
	INT/EXT	and manually enter the compensation			
		value after selecting the fixed method			

Click on the lower right corner to save and end the thermocouple adding operation.

4.1.4 Thermistor

Click on the right to use the sensor information in the sensor library as a template to quickly add thermal resistance parameters

Table 44 Thermistor to be Inspected Adding Setting in Task Center

Item	Effective value	Explanation				
Name	Numbers, letters and characters,	Name	of	Thermistor	to	be

	can support up to 16 inputs	inspected
Device Serial No.	Numbers, letters and characters,	Serial No,of Thermistor to be
Device Serial No.	can support up to 16 inputs	inspected
	Numbers, letters and characters,	The location information of the
	can support up to 16 inputs	thermistor being inspected is
		used to deal with the problem of
Location		distinguishing multiple
		thermistors from different
		departments of the same
		company
		Remarks of the thermistor to be
Remarks	Numbers, letters and characters,	inspected
	can support up to 16 inputs	
	Numbers, letters and characters,	The name of the company from
	can support up to 16 inputs	which the thermistor was
Inspection Department		inspected is used to deal with the
mopeonon Beparament		user's problem of distinguishing
		multiple thermistors from different
		companies.
Range	(-273∼10000) °C	Range of the thermistor to be
range		tested, the unit can be switched
	Depends on user needs, please	Accuracy of tested thermistor,
Permission error	refer to chapter 4.1.10 Accuracy	please refer to chapter 4.1.12
1 Gilliosion Giloi	Setting of the Equipment Under	Accuracy setting of tested
	Inspection for details	equipment for details
Wiring system	1/3/4 wiring	Thermistor wire system selection

		of Thermistor to be inspected
Rtn	Digits	Rtn value of tested thermistor
Tn	Digits	Tn value of tested thermistor
9	Digits	
β		β value of tested thermistor

Click on the lower right corner to save and end the thermistor adding operation.

4.1.5 TemperatureTransmitter

Click on the right to use the existing sensor information in the sensor library as a template to quickly add temperature transmitter parameters

Table 45 Temperature Transmitter to Be Inspected Adding Setting in Task Center

Item	Effective value	Explanation
Name	Numbers, letters and characters,	Name of temperature transmitter
ivaille	can support up to 16 inputs	to be inspected
Device Serial No.	Numbers, letters and characters,	Serial No,of temperature
Device Serial No.	can support up to 16 inputs	transmitter to be inspected
	Numbers, letters and characters, can support up to 16 inputs	The location information of the
		tested temperature transmitter is
		used to deal with the user's
Location		problem of distinguishing multiple
		temperature transmitters from
		different departments of the same
		company.

Remarks	Numbers, letters and characters, can support up to 16 inputs	Remarks of the tested temperature transmitter
Inspection Department	Numbers, letters and characters, can support up to 16 inputs	The name of the company from which the temperature transmitters are inspected is used to deal with the problem of distinguishing between multiple temperature transmitters from different companies.
Input	(-273∼10000) °C	The range of the tested temperature transmitter, the unit can be switched
Output	Analog signal 1. mA: 4~20、0~10、0~20 2. V: 0~5、0~10、4~20 3.Custom: -30~30 (click the electrical signal unit to switch between mA and V) HART transmitter: Primary variable, percentage, output current, loop current	The output signal setting of the tested temperature transmitter
Accuracy	0.1%、0.2%、0.5%、1%、1.5%、 2%、2.5%、 custom	The accuracy of the tested temperature transmitter, the user can set the special accuracy through a custom option, the unit

		is%
Display decimal places	0.001、0.01、0.1、1	Temperature display digits
Conversion function	Wiring/Extraction of root	Transmitter conversion function

Click on the lower right corner to save and end the temperature transmitter adding operation.

4.1.6 Temperature Switch

Click on the right to use the sensor information in the sensor library as a template to quickly add temperature switch parameters.

Table 46 Temperature Switch to Be Inspected Adding Setting in Task Center

Item	Effective value	Explanation
Name	Numbers, letters and characters,	Name of temperature switch to be
ivaille	can support up to 16 inputs	inspected
Device Serial No.	Numbers, letters and characters,	Serial No,of temperature switch
Device Serial No.	can support up to 16 inputs	to be inspected
	Numbers, letters and characters, can support up to 16 inputs	The position information of the
		temperature switch to be checked
		is used to deal with the problem
Location		of distinguishing multiple
		temperature switches from
		different departments of the same
		company
Remarks	Numbers, letters and characters,	Remarks of temperature switch to
Remarks	can support up to 16 inputs	be inspected

Inspection Department	Numbers, letters and characters, can support up to 16 inputs	The name of the company from which the temperature switch is inspected is used to deal with the user's problem of distinguishing multiple temperature switches from different companies
Range	(-273∼10000) °C	The tested temperature switch range, the unit can be switched
Set point	Depends on switch range	Set point of tested temperature switch
Set point range	Depends on switch range	The set point range of the tested temperature switch The calibrator only captures the temperature switch action within the set point range.
Switch type	Normally open/close	Open and close type of the tested temperature switch
Set point error	Depends on switch range	Permisssion error range of the tested temperature switch
Switch channel type	Dry contact, wet contact, NPN switch, PNP switch	Channel type of the tested temperature switch
Dead band	Depends on switch range	Dead band of of the tested temperature switch

Click igotimes on the lower right corner to save and end the temperature switch adding operation.

4.1.7 Glass Liquid Thermometer, Surface Thermometer

Click on the right to use the existing sensor information in the sensor library as a template to quickly add glass liquid thermometer and surface thermometer parameters.

Table 47 Glass Liquid Thermometers, Surface Thermometer to Be Inspected Adding Settings in Task Center

Item	Effective value	Explanation
Name	Numbers, letters and characters,	The tested device name
Name	can support up to 16 inputs	
Device Serial No.	Numbers, letters and characters,	The tested device serial No.
Device Selial No.	can support up to 16 inputs	

Location	Numbers, letters and characters, can support up to 16 inputs	The location information of the inspected equipment is used to deal with the user's problem of distinguishing multiple glass liquid thermometers from different departments of the same company
Remarks	Numbers, letters and characters, can support up to 16 inputs	Remarks of inspected equipment
Inspection Department	Numbers, letters and characters, can support up to 16 inputs	The name of the company from which the inspected equipment is sourced, to deal with the user's problem of distinguishing multiple glass liquid thermometers from different companies
Range	(-273∼10000) °C	Range of tested equipment, unit can be switched.
Permission error	Depends on user needs, please refer to chapter 4.1.10 Accuracy Setting of the Equipment Under Inspection for details	Accuracy of inspected equipment, please refer to chapter 4.1.12 Accuracy setting of inspected equipment for details.
Division value	Depends on thermometerrange	The temperature difference represented by each grid of the inspected equipment.

Click in the lower right corner to save and end the adding operation.

4.1.8 Temperature Controller, Bimetal Thermometer, Pressure Thermometer, Transformer Winding Thermostat Click on the right to use the existing sensor information in the sensor library as a template to quickly add parameters for bimetal thermometers, pressure thermometers, and transformer winding thermostats.

Table 48 Added Settings in Task Center

Item	Effective value	Explanation
Name	Numbers, letters and characters,	The tested device name
Ivaille	can support up to 16 inputs	
Device Serial No.	Numbers, letters and characters,	The tested device serial No.
Device Serial No.	can support up to 16 inputs	
		The location information of the
		inspected equipment is used to
Location	Numbers, letters and characters,	deal with the user's problem of
Location	can support up to 16 inputs	distinguishing multiple devices
		from different departments of the
		same company
		Remarks of inspected equipment
Remarks	Numbers, letters and characters,	
	can support up to 16 inputs	
	Numbers letters and characters	The name of the company from
Inspection Department	Numbers, letters and characters,	which the device is inspected is
	can support up to 16 inputs	used to deal with the problem of

		distinguishing multiple devices
		from different companies
Range	(-273∼10000) °C	The tested device range, unit can
range	(273 10000) 0	be switchable
		The accuracy of the equipment to
		be inspected, the user can set a
	1%、1.5%、2%、2.5%、4%、custom	special accuracy through a
Permission error	unit is %	custom option. (The temperature
		controller:
		0.1, 0.15, 0.3, 0.5, 1, 2.5, custom
		unit °C)
Division value	Dananda an tharmamatar ranga	Display resolution of the tested
Division value	Depends on thermometer range	device
		Number of electrical contacts of
		the equipment under inspection
		If the number of electrical
		contacts is not 0, you must set
Electric contact	0、1、2	the electrical contact value, the
		upper and lower limits of the
		electrical contact, the effective
		value and unit depend on the
		range

Click $\ensuremath{ igoreanterlineskip igoreanterlineskip }$ on the lower right corner to save and end the adding operation.

4.1.9 Digital Thermometer

Click on the right to use the existing sensor information in the sensor library as a template to quickly add digital thermometer parameters.

Table 49 The Digital Thermometer to Be Inspected Adding Setting in Task Center

Item	Effective value	Explanation
Name	Numbers, letters and characters,	Name of Digital Thermometerto
Name	can support up to 16 inputs	be inspected.
Device Serial No.	Numbers, letters and characters,	Serial No.of Digital Thermometer
Device Serial No.	can support up to 16 inputs	to be inspected.
		The location information of the
		tested digital thermometer is
	Numbers letters and sharestors	used to deal with the user's
Location	Numbers, letters and characters, can support up to 16 inputs	problem of distinguishing multiple
		digital thermometers from
		different departments of the same
		company.
Remarks	Numbers, letters and characters,	Remarks of digital thermometer
Remarks	can support up to 16 inputs	to be inspected.
	Numbers, letters and characters, can support up to 16 inputs	The name of the company from
Inspection Department		which the digital thermometers
		are inspected is used to deal with
		the user's problem of
		distinguishing multiple digital

		thermometers from different
		companies.
Input	(-273∼10000) °C	Measurement range of Digital
		temperature to be inspected, unit
		can be switched.
	1%、1.5%、2%、2.5%、4%、custom	The accuracy of the digital
		thermometer to be inspected, the
Accuracy		user can set the special accuracy
		through a custom option, the unit
		is%
	Depends on Thermometer Rannge	The temperature difference
Division Value		represented by each cell of digital
		thermometer to be inspected.
	0、1、2	The number of electrical contacts
		of the digital thermometer to be
		inspected.
Electrical contacts number		If the number of electrical
		contacts is not 0, you must set
Liectrical contacts number		the electrical contact value, the
		upper and lower limits of the
		electrical contact, the effective
		value and unit depend on the
		range.
Enable analog output	Open/Close	Select whether the digital
		thermometer to be inspected has
		analog output function

		If you turn on this function, the
		user also needs to set the output
		signal.
Output (only when the analog output function is enabled)	-30~30	The output signal range of the
		tested digital thermometer, the
		unit depends on the current or
		voltage measurement (click the
		electrical signal unit to switch
		between mA and V)
		The accuracy of the analog
Analog output accuracy (only		output signal of the tested digital
when the analog output function	1%、1.5%、2%、2.5%、4%、custom	thermometer, the user can set the
is enabled)		special accuracy through a
		custom option, the unit is%

Click on the lower right corner to save and end the digital thermometer adding operation.

4.1.10 Double Contact Switch

Click on the right to use the existing sensor information in the sensor library as a template to quickly add dual-contact switch parameters.

Table 50 The Tested Double Contact Switch Adding Setting in Task Center

Item	Effective value	Explanation
Name	Numbers, letters and characters,	Name of temperature switch to be
	can support up to 16 inputs	inspected

		Serial No. of temperature switch
Device Serial No.	Numbers, letters and characters,	to be inspected
	can support up to 16 inputs	
	Numbers, letters and characters, can support up to 16 inputs	The position information of the
		temperature switch to be
		inspected is used to deal with the
Location		problem of distinguishing multiple
		temperature switches from
		different departments of the same
		company.
Remarks	Numbers, letters and characters,	Remarks of temperature switch to
Remarks	can support up to 16 inputs	be inspected
		The name of the company from
		which the temperature switch is
Inspection Department	Numbers, letters, can support up	inspected is used to deal with the
пізресцоп Верантені	to 16 input	user's problem of distinguishing
		multiple temperature switches
		from different companies
Range(Switch Contact1/2)		The temperature switch to be
	(-273∼10000) °C	inspected range (switch contact 1
		/ 2), the unit can be switched
Set point (Switch Contact1/2)	Depends on switch range	Set point of temperature switch to
Set point (Switch Contact 1/2)		be inspected(switch contact 1 / 2)
Set point range (Switch Contact1/2)	Depends on switch range	Set point range of temperature
		switch to be inspected (switch
		contact 1 / 2), the calibrator only

		captures the temperature switch			
		action within the set point range.			
		Open and close type of			
Switch type (Switch Contact1/2)	Normally open/ close	temperature switch to be			
		inspected (switch contact 1 / 2).			
Set point error (Switch		Permission error range of			
Set point error (Switch Contact1/2)	Depends on switch range	temperature switch to be			
		inspected (switch contact 1 / 2).			
Switch Channel type (Switch	Dry contact wet contact NDN	Channel type of temperature			
Switch Channel type (Switch	Dry contact, wet contact, NPN	switch to be inspected (switch			
Contact1/2)	switch, PNP switch	contact 1 / 2).			
		Dead band of temperature switch			
Dead band (Switch Contact1/2)	Depends on switch range	to be inspected (switch contact 1			
		/ 2).			

Click on the lower right corner to save and end the digital thermometer adding operation.

4.1.11 Integrated Thermal Resistance Indicator Thermometer

Table 51 The Inspected Integrated Thermal Resistance Indicator Thermometer Adding Setting in Task Center

Item	Effective value	Explanation	
Name	Numbers, letters and characters,	Name of tested thermal	
ivaille	can support up to 16 inputs	resistance	
Device Serial No.	Numbers, letters and characters,		
Device Serial No.	can support up to 16 inputs	resistance being inspected	
Location	Numbers, letters and characters,	The location information of the	
Location	can support up to 16 inputs	thermal resistance under	

		inspection is used to deal with the
		problem of distinguishing multiple
		thermal resistances from different
		departments of the same
		company
	Numbers, letters and characters,	Remarks of the thermal
Remarks	can support up to 16 inputs	resistance being inspected
		The name of the company from
		which the thermal resistors are
Lancation Boundaries	Numbers, letters and characters,	inspected is used to deal with the
Inspection Department	can support up to 16 inputs	user's problem of distinguishing
		multiple thermal resistors from
		different companies
		Measuring range of thermal
Range	(-273∼10000) °C	resistance under test, unit can be
		switched
		Accuracy of tested thermal
	The calibrator provides several	resistance
Permissible Error	common thermal resistance	For custom settings, please
Permissible Error	tolerances, and allows customers	refer to Chapter 4.1.12
	to customize	Accuracy Settings of the
		Device Under Inspection
Wiring System	Two/ Three/ Four wiring system	Selection of thermal resistance
willing System	Two/ Tillee/ Four willing system	wire system to be inspected
Thermal Resistance Type	Pt series/ Cu series/Ni	Types of thermal resistance to be
Thermal Nesistance Type	series,/CVD	inspected

R0	Digits	RO value of Thermal resistance
Pointer guage accuracy	0.5%、1%、1.5%、2.5%、4%、	Division Value of Pointergauge to
Pointer guage accuracy	custom	be inspected
Dointor guaga divisan valua	0.01~1000	Division Value of Pointergauge to
Pointer guage divison value	0.01~1000	be inspected

Click on the lower right corner to save and end the digital thermometer adding operation.

4.1.12 Accuracy Settings of Inspected Equipment

The calibrator provides a powerful function of setting the accuracy of the inspected equipment. In addition to the conventional accuracy setting, it also supports up to three segments of the accuracy setting of the inspected equipment. In the setting interface, all the highlighted values can be modified.

The calibrator provides two types of accuracy settings:

(1) Fixed accuracy

The types of inspections that can be applied with a fixed accuracy setting are: glass liquid thermometer

Example: $(0 \sim 100)\% \pm (0.2$ °C)

How to set a fixed accuracy value:

- ◆ Click the fixed accuracy value (highlight the value, such as the value 0.2 in the example) to enter the selection page. The system default precision is: 0.1, 0.15, 0.3, 0.5, 1, 2.5 and custom.
- ◆After selecting custom, the user can input custom values through the keyboard. The unit depends on the range unit setting of the tested equipment.

(2) Fixed accuracy + reading accuracy

The types of inspections that can be applied with a fixed accuracy setting are: thermal resistance, thermocouple, thermistor, surface thermometer.

Example:
$$(0 \sim 100)\% \pm (0.1)$$
 °C + 0.002 *I t I)

How to set a fixed accuracy value:

Set fixed accuracy: click on the fixed accuracy value (highlight the value, such as the value 0.1 in the example),

◆Enter the selection page, the system default precision: 0.1, 0.15, 0.3, 0.5, 1, 2.5 and custom.

Set the reading accuracy: click on the fixed accuracy value (highlight the value, such as 0.002 in the example),

◆Enter the selection page, the system default accuracy: 0.001, 0.002, 0.004, 0.005, 0.008, 0.01 and custom.

◆After selecting custom, the user can input custom values through the keyboard, and the unit depends on the range unit setting of the tested equipment.

(3) Segmentation Setting

The calibrator allows users to list the accuracy in sections, and each section is set separately to meet different needs, how to set the segmentation accuracy:

Click \fiveright on the right side of the screen to increase or decrease the number of segments, or click the number on the right to input the number of segments through the keyboard. Currently, the calibrator supports up to 3 segments of accuracy, refer to chapter 4.1.10.1 Accuracy Setting to set the accuracy of each segment.

4.2 Test Center

Users can manage all test tasks in the test center.

4.2.1 Task Management

Click the task added in the test center to quickly read the test information.

On the task information page, users can:

Click to directly enter the task start interface. The calibrator will perform a calibration test again according to the previous spare parts equipment and task settings. For task execution operations, please refer to Chapter 4.3 Task Execution.

- ◆Click to use the current test settings as a template to quickly add new tasks. The tested device cannot be modified for new tasks added quickly. Please refer to the following for the configuration editing operations of test tasks.
- ◆On the task setting information page, the content with > the mark can be modified. For the task setting operation, please refer to chapter 4.2.2 task setting.
- ◆Click ⊕ on the right to add a task, click ⊕ in the center of the screen, select the equipment to be inspected from the equipment center, the calibrator will display the basic information of the equipment to be inspected, and will automatically list the corresponding equipment according to the type of equipment to be inspected Task setting menu.

- ◆Click no the right to delete the added tasks. Users can select the tasks to be deleted according to their needs and click no delete them, or click to delete all tasks.
- ◆Click ② on the right to search for the added tasks, the search conditions are as follows:

Table 52 Task Search and Find Condition of Task Center

Item	Effective value	Explanation	
Test name	Numbers, letters and characters,	Fill in the name of the task	
restriame	can support up to 16 inputs		
Device name	Numbers, letters and characters,	Fill in the name of the inspected	
Device name	can support up to 16 inputs	equipment involved in the task	
Device serial NO.	Numbers, letters and characters,	Fill in the serial number of the	
Device Serial NO.	can support up to 16 inputs	inspected equipment	
		Whether the task has been	
		performed on the calibrator	
Execution	Yes/No/ All	depends on whether there is test	
		data generated	
	Start time: 2000-1-1 ~	The range used to search for the	
	2099-12-31	creation time of the task, for	
Creation time		example: tasks created between	
	Over time:2000-1-1 ~ 2099-12-31	January 1, 2018 and December	
		31, 2018	
Lindated time	Start time:: 2000-1-1 ~	Used to search for the range of	
Updated time	2099-12-31	the last used time of the task	

Over time: 2000-1-1 ~ 2099-12-31

Click on the lower right corner to apply the search search criteria, and the matching tasks will appear in the list.

4.2.2 Task Settings

Click the task to enter the task setting interface, which is divided into basic information, control settings, equipment settings, set point list, indication error test, etc.

(1) Dual Channel Test

The tested types that support dual-channel testing are as follows:

Table 53 Dual Channel Test Compatible information of Task Ceneter

Type of inspected equipment	Whether to support dual channel
Thermal Resistance	•
Thermocouple	•
Thermistor	•
Temperature transmitter	
Temperature switch	
Glass liquid thermometer	•

Temperature Controller	
Bimetallic thermometer	
Pressure thermometer	
Winding thermostat for transformer	
Surface thermometer	•
Digital thermometer	
Double contact switch	
Integrated thermal resistance pointer meter	
thermometer	

For the tested device type that supports dual-channel testing, after adding a tested device, you can click \bigoplus to add the next tested device.

(2) Basic Information settings

The types of inspections that support basic information settings are as follows:

Table 54 Task Basic Information Setting Compatibility Table

DUTs type		Basic rmation		Ol	peration	Settings	
DOTS type	Name	Remarks	Cycle index	Range	Dwell time	Readings numbers	Readings intervas
Thermal	•	•	•	•	•	•	•
Resistance							
Thermocouple	•	•	•	•	•	•	•
Thermistor	•	•	•	•	•	•	•

Temperature	•	•	•	•	•	•	•
transmitter							
Temperature	•	•	•				
switch							
Glass liquid	•	•	•	•	•	•	•
thermometer							
Temperature	•	•	•	•	•	•	•
Controller							
Bimetallic	•	•	•	•	•	•	•
thermometer							
Pressure	•	•	•	•	•	•	•
thermometer							
Winding	•	•	•	•	•	•	•
thermostat for							
transformer							
Surface	•	•	•	•	•	•	•
thermometer							
Digital	•	•	•	•	•	•	•
thermometer							
Double contact	•	•	•				
switch							
Integrated	•	•	•	•	•	•	•
thermal							
resistance							
pointer meter							
thermometer							

The basic information setting affects the basic process of the task; each item is introduced as follows:

Table 55 Task Basic Information Settings

Item	Effective value	Explanation					
Basic Information settings							
Task name	Numbers, letters and characters, can	Task Name					
rask flame	support up to 16 inputs						
Remarks	Numbers, letters and characters, can	Task Remark					
Remarks	support up to 16 inputs						
	Operation Settings						
Cycle index	1/2/3	Task repetition times					
Route	One way/Double way	Task running mode					
		The dwell time of each test point					
		after the temperature stabilizes to					
Dwell time	1~60	before the reading, to wait for the					
		constant temperature of the tested					
		equipment, unit: minute					
		After each test point is stable and					
Ponding time	1~6	the dwell time has elapsed, the					
Reading time	1~0	number of times the calibrator reads					
		the number of the tested equipment.					
Pooding interval	0~3600	The time interval between each					
Reading interval	0~3600	reading, unit: second					

Click $\mathfrak D$ on the right corner to apply basic information settings.

(3) Control Settings

The temperature control setting affects the temperature stability judgment conditions of the calibrator, and each item is introduced as follows:

Table 56 Task Temperature Control Settings

Table de Task Temperature Control Cottinge				
Item	Effective Explanation			
Item	value			
Choose REF	INT / EXT	Choose built-in (INT) or external (EXT) sensor as standard		
		Allowable range of temperature fluctuation, one of the		
Fluctuation	0.01~10	conditions for temperature stability judgment, the unit		
		depends on the unit of the range of the tested equipment.		
Stabilization time	1~60	Temperature control stability duration, one of the		
		temperature stability judgment conditions, unit: minute		
		The allowable range of the difference between the standard		
Torget deviction	0~10	temperature indication and the target temperature, one of		
Target deviation	0~10	the conditions for temperature stability judgment, the unit		
		depends on the unit of the tested equipment		

When the three items of volatility, stabilization time and target deviation are met at the same time, the temperature is considered stable.

(4) Device Settings

The detected types that support device settings are as follows:

Table 57 Task equipment setting compatibility

DUTs type	Device1&2	Device Fluctuation	Device Stabilization time	Temperature control rate	Device1&2
Thermal	•	•	•		•
Resistance					
Thermocouple	•	•	•		•
Thermistor	•	•	•		•
Temperature	•	•	•		•
transmitter					
Temperature	•				•
switch				•	
Glass liquid	•	•	•		
thermometer					
Temperature	•	•	•		
Controller					
Bimetallic	•	•	•		
thermometer					
Pressure	•	•	•		
thermometer					
Winding	•	•	•		
thermostat for					
transformer					
Surface	•	•	•		

thermometer					
Digital			_		
thermometer	•	•	•		
Double contact					
switch				•	
Integrated thermal					
resistance pointer					
meter		•	•		
thermometer					

Equipment settings affect the application of the inspected equipment, and each item is introduced as follows:

Table 58 Task equipment setting compatibility Explanation

		7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		
Item	Effective value	Explanation		
	Depends on the selected	The information of the inspected equipment can		
	equipment to be inspected,	be edited, and the updated information will		
Device1&2	please refer to 4.1	overwrite the information in the equipment center.		
	Equipment Center for			
	details			
	Fluctuation:0.01~10	The user can set here the special fluctuation		
Fluctuation	Fluctuation.0.01~10	setting for the tested equipment, the unit depends		
		on the range unit of the tested equipment.		
	Stabilization time: 1~60	The user can set here the dedicated stabilization		
Stabilization time	Stabilization time: 1~00	time setting for the tested equipment, the unit is		
		minute		
Temperature control	0.20	The temperature control rate of the calibrator, unit:		
rate	0~30	temperature unit/minute		

		The calibrator uses this temperature control rate only within the range of the temperature switch set point. For details, please refer to chapter 3.1.6 Temperature Switch
Channel 1&2	CH1/CH2	Set the tested device corresponding to channel 1 and channel 2, depending on whether the tested device type supports dual-channel testing and connection status.

(5) Setpoint List

The types of inspections that support control settings are as follows:

All tested device types support the set point list function

- ◆The calibrator supports 1 to 17 set point settings. The user can increase or decrease the set point by using the up and down keys on the right, or click the number of set points on the right, and enter the number of set points through the keyboard
- ◆The number of set points is one-way quantity. For example: if the route is set to round-trip in the basic task setting and the number of set points is 3 (0, 50, 100), the actual number of set points is 6 (0, 50, 100, 100, 50, 0).

 (6) Indication Error Test

The calibrator provides the error test function of the indication. This function only supports liquid glass thermometers, bimetal thermometers, temperature controllers, and pressure thermometers.

(7) Electric Contact Test

The calibrator provides an electrical contact test function, this function only supports bimetal thermometers and temperature controllers with non-zero electric contacts.

When checking the electric contact test, the settings are as follows:

Table 59 Electric Contact Test

Item	Effective value	Explanation
Temperature control rate		Set electrical contact test
	Depends on	temperature control rate
	temperature unit	
First electrical contact value	CH 1 / CH 2	Select the first electrical contact
		to measure the occupied
		channel
The second electrical contact value (only	CH 1 / CH 2	Select the first electrical contact
enabled for devices with 2 electrical contacts)		to measure the occupied
		channel

You must select one or both of the electrical contact test and the indication error test. The system defaults to

select the indication error test.

4.3 Task Execution

4.3.1 Selection of Tested Equipment and Test Settings

After the tested device and task test configuration are added, the user needs to enter the task execution stage through the existing test tasks in the test center.

How to operate:

- 1) Select the added task settings and enter the task setting interface, where the user can modify the task settings.
- 2) After adjusting the task settings, click ① on the lower right corner to enter the task execution interface. For details, refer to chapter 4.3.2 Task execution.
- ◆All setting changes made by the user will overwrite the original settings and take effect immediately after clicking the confirm button.

4.3.2 Task Operation Interface

On the task execution page, the calibrator will display a connection diagram to prompt the user the correct

connection method.

◆Only CH1 supports HART transmitter

Note: Please carefully check the connection method of the tested equipment. The wrong connection method may cause damage to the calibrator or the tested equipment. If you have special connection requirements, please consult the equipment seller for help.

(1) Typical Task Interface

The typical task interface of calibrator is as follows (except temperature switch and double contact switch):

Figure 9 Typical Task Operation Interface

- 1) In the interface, the temperature output of the calibrator is displayed at the bottom, and the return value of the tested equipment is displayed at the top.
- ◆For equipment that can automatically collect data in calibrator, such as thermal resistance, thermocouple, etc., the return value is automatically collected data, and the user is not allowed to change it.
- For equipment that cannot automatically collect numbers in calibrator, such as glass liquid thermometers, bimetal thermometers, etc., users need to manually click the returned value of the tested equipment after the calibrator has a stable temperature control and meet the requirements of the residence time, and use the numeric keyboard Enter the current value of the device under inspection.
- 2) In the top column of the interface, the current temperature set point and current cycle times are displayed
- 3) On the right side of the interface are standard buttons, the button description is as follows:

Table 60 Typical Task Execution Interface Buttons

Button Icon	Manual mode [©]	Automatic mode (a)	Explanation
-------------	-----------------------------	--------------------	-------------

(S)		_	Launch the task, all the data currently	
(5)	•	•	obtained will be cleared.	
			Switch the display mode to normal or	
			table mode, both modes can modify the	
			displayed value of the tested equipment	
(E)			During the temperature switch test,	
		•	click to switch the display mode,	
			and the normal mode displays the	
			temperature-time graph	
			Switch to the previous set point	
(M)	_		The calibrator will clear the set point data	
		•	and automatically control the temperature	
			to the previous set point.	
			Switch to the next set point	
(N)			The calibrator will save the	
		·	instantaneous standard value and the	
			detected value in the final report.	
			Skip current set point	
(-))			The calibrator will leave the data at this	
	•	•	point blank, and the standard value and	
			the detected value will not be displayed in	
			the final report.	
<u>(ii)</u>		•	Stop or continue the current task	

↑50.00 1 Cycle-index	•	•	Pause or resume the current task Display the current number of cycles and the current number of test points in the cycle, in the example, it means that the current is the first cycle, Up, and the set point is 50 °C.
-------------------------	---	---	---

(2) Temperature switch operation interface

In the operation interface of the task temperature switch in Figure 11, the lower part displays the temperature output change of the calibrator in the form of a curve, and the upper part displays the switch status of the tested equipment and the corresponding temperature value during the last on and off action.

- ◆ The operating interface of the double contact switch is similar to that of the temperature switch.
- ◆ The upper part of the operating interface of the double contact switch displays the on-off status of the two temperature switches, and does not display the temperature value corresponding to the last open and close action value.

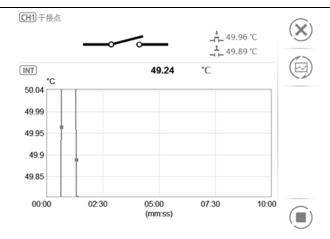


Figure 10 Task Temperature Swich Operation Interface

- (3) Thermal resistance, thermocouple, thermistor, temperature transmitter, integrated thermal resistance pointer meter thermometer
- ◆ Only CH1 supports HART transmitter

The calibrator provides manual and automatic execution modes for the above types of equipment to be inspected.

Manual Performace:

Click the lower right corner of the screen to start the task, the calibrator will automatically control the temperature to the first set point.

After the temperature of the calibrator is stable, the temperature output value of the calibrator will turn green, and the user will be prompted for the residence time next to it.

When the residence time meets the requirements, the calibrator will display the residence time as green.

Click to enter the next set point measurement, the calibrator will automatically record the instantaneous temperature output value and the instantaneous return value of the tested equipment to the report

After all the set point tests are completed, click to enter the task report page, where the user can save the test

Automatic Performance:

data for this time. For details, refer to chapter 4.4 task termination.

Click on the lower right corner of the screen to start the task, and the calibrator will automatically start temperature control. After all the set point tests are completed, click to enter the task end page, where the

user can redo the test or save the test data. For details, refer to chapter 4.4 task termination.

(4) Temperature switch, double contact switch

The calibrator only provides automatic execution mode for temperature switch task.

Automatic Performance:

Click on the lower right corner of the screen to start the task, the calibrator will automatically start temperature control.

After all the set point tests are completed, click () to enter the task end page, where the user can redo the test or save the test data. For details, refer to chapter 4.4 task termination.

(5) Liquid glass thermometer, temperature controller, bimetal thermometer, pressure thermometer, transformer winding thermostat, surface thermometer, digital thermometer.

ManualPerformace:

Click on the lower right corner of the screen to start the task, and the calibrator will automatically control the temperature to the first set point.

After the temperature of the calibrator is stable, the temperature output value of the calibrator will turn green, and the user will be prompted for the residence time.

When the residence time meets the requirements, the calibrator will display the residence time in green.

The user needs to click the return value of the tested equipment at the top of the screen, and input the current displayed value of the tested equipment through the keyboard. After the input is completed, click Enter to apply the value, and the calibrator will automatically control the temperature to the next set point.

After all the set point tests are completed, click to enter the task end page, where the user can redo the test or save the test data. For details, refer to chapter 4.4 task termination.

ManualPerformace:

- ◆ Click and the lower right corner of the screen to start the task, and the calibrator will automatically start temperature control.
- ◆ When the temperature reaches the set point, the system will automatically take the standard value as the reading of the inspected device. At this time, the user can manually click and modify the reading of the inspected

device.

- ◆ When the temperature reaches the set point, the user needs to modify the reading of the tested equipment within the dwell time.
- ◆ If the residence time requirement is met, the calibrator will automatically advance to the next set point, and the reading of the tested equipment at this set point cannot be modified again.
- ◆ After all the set point tests are completed, click to enter the task end page, where the user can redo the test or save the test data. For details, refer to chapter 4.4 task termination.

4.4 Task Termination

4.4.1 Task Report

On the task report page, the user can browse all the data of this test. For a dual-channel task, the user can click on the name of the DUTs at the top of the screen to view the test reports of different inspected devices.

Page key description:

Table 61 Task Termination Interface Button

Button Icon	Explanation
(V)	Exit this task immediately; all current task data will
(>)	be cleared.
(C)	The calibrator will restart this task immediately, and
9	all current task data will be cleared.
(E)	Save the data of this task. For details, refer to
	Chapter 4.4.2 Report Save.

4.4.2 Saving Reports

After the task is over, the calibrator will automatically jump to the test result save page, where the user can save the test result.

How to set:

Table 62 Task Data Saving Set

Item	Effective value			Expla	natio	n
Operator	Numbers, letters and Chinese, up to	Fill	in	the	test	operator
Operator	16 digits input	infor	matic	n		

Execution time	2000-1-1 ~ 2099-12-31	Fill in the task execution time
Ambient temperature	Depends on temperature unit	Fill in the ambient temperature
Ambient humidity	0.100	Fill in the environmental humidity,
Ambient humidity	0~100	unit: %RH

How to use:

After saving the settings, the user can choose to save the task data as: before adjustment, after adjustment or both, and click the confirm button in the lower right corner to save. Click the cancel button in the upper right corner to cancel the save and return to the task report page.

4.5 Data center

Users can manage all test data in the data center.

4.5.1 Data View and Management

Click the existing test data in the data center to read the important information and test data of the test. On the data information page, the user can click on the lower right corner to redo the task. During this process, the user is not allowed to make any changes to the device or test.

4.5.2 Data Deletion

Click on the right side of the data center to enter the data deletion page to delete existing task data.

How to use:

- ◆After entering the data deletion page, click the task data to be deleted (multiple selections are possible);
- ◆Click (②) on the lower right corner to delete the selected task data.

The user can delete all task data in the data center by clicking one key on the right.

4.5.3 Data Search

Click On the lower right corner of the data center to set the task data search items.

How to use:

(1) The user can choose 4 items from the following items:

Table 63 Search Items

SerialNo.	Item name
1	Device name
2	Device No.
3	Device category
4	Test name
5	Executor

6	Result Type
7	Pass
8	Execution time

- (2) Click on the lower right corner to apply settings.
- (3) Click the highlighted part under the search item to filter or select keywords for the search item.
- ◆Keyword filtering does not limit upper and lower case, and supports partial keyword search, refer to Example 1.
- ◆Delete the content of all search keywords to cancel the keyword filtering under the item, refer to Example 2.
- Example 1: Device name-click "all" below-enter "lg"-click $oldsymbol{oldsymbol{arphi}}$ -all data with "lg" in the device name will be listed.
- Example 2: Device name-click "Ig" below-delete all content—click igotimes -cancel the search for the keyword "Ig".

5. Application

The calibrator provides a variety of applications to meet the testing needs of different users.

5.1 Thermo Calculator

The calibrator provides thermocouple and thermal resistance calculator functions, which is convenient for users to perform numerical calculations on site.

How to set

(1) Thermocouple

Table 64 Calculation of thermocouples

Item	Effective value	Explanation
Concertume	S, R, B, K, N, E, J, T, C, D, G, L, U,	Select thermocouple type
Sensor type	LR, A, 10μV/°C, 1mV/°C	
		Thermocouple electrical signal output, the
		unit is mV
Electrical signal	Depends on thermocouple type	If you need to calculate the electrical
		signal value, please enter the fixed value
		of the cold junction first
Celsius system	Depends on thermocouple type	Temperature in degrees Celsius, unit: °C
Kelvin	Depends on thermocouple type	Temperature in Kelvin, unitL: K
Fahrenheit	Depends on thermocouple type	Temperature in Fahrenheit, unit: °F
Chard value of cold		The fixed value of cold junction, the
Fixed value of cold	-10~50	parameter needed to calculate the
junction		electric signal value, unit: °C

Example: K-type thermocouple:

The user only needs to enter 20 in degrees Celsius, and the calibrator will automatically calculate 68 degrees Fahrenheit and 293.15 Kelvin corresponding to 20 degrees Celsius

If the user needs to calculate the electrical signal value, he also needs to enter the fixed value of the cold junction as a supplementary condition to obtain the correct electrical signal value.

(2) Thermal Resistance

Table 65 Calculation of thermal resistance

Item	Effective value	Explanation
Concer turns	All thermal resistors, ITS-90, CVD and	Select thermal resistance type
Sensor type	thermistors in the sensor library	
Electrical signal	Depends on thermal registance type	Thermal resistance electrical signal
Electrical signal	Depends on thermal resistance type	output, unit: Ω
Coloius avatam	Depends on the responsible type	Temperature in degrees Celsius,
Celsius system	Depends on thermocouple type	unit: °C
Kelvin	Depends on thermocouple type	Temperature in Kelvin, unitL: K
Fahrenheit	Depends on thermocouple type	Temperature in Fahrenheit, unit: °F

How to use:

The user only needs to click the known item and enter the value, and the calibrator will automatically calculate the value of the remaining items.

5.2 Temperature Control Data Recording

The calibrator provides temperature control recording function, which can record the temperature control data of calibrator within the set range.

How to set:

(1) Basic settings

Table 66 Temperature control data recording settings

Item	Effective value	Explanation
Starting temperature	Current temperature value/custom temperature value	The temperature control data recording start temperature point, after reaching this temperature point, the calibrator will start recording temperature control data
Final temperature	Based on calibrator mode	The temperature control data recording end temperature point, once the temperature is reached, the

		calibrator will stop recording the temperature control data
Control settings	Refer to the following table temperature control data recording control settings	Set the temperature control parameters of the temperature control process
Interval of data acquisition	1~60	The time interval of each data collection point, unit: second
Dwell time	1~60	The dwell time of each test point after the temperature stabilizes to before the reading, to wait for the constant temperature of the tested equipment, unit: minute
Stability test	Enable/Disable	Enable or disable the stability test function, when the calibrator reaches the specified temperature and the dwell time has passed, the test starts
Stability test time (only when fluctuation test is enabled)	1~60	The duration of the stability test, in minutes
CH 1 & CH 2	Refer to the following table temperature control data recording channel settings	Set channel parameters

(2) Control settings

Table 67 Temperature control data recording control settings

Item	Effective value	Explanation	
Control parameters			
Stability	0.01~10	Allowable range of temperature stability, one of the conditions for temperature stability judgment, the unit depends on range unit of	
Stabilization time	1~120	the DUTs. Temperature control stability duration, one of the temperature stability judgment conditions, unit: minute	
Target deviation	0~10	The allowable range of the difference between the standard temperature indication and the target temperature, one of the conditions for temperature stability judgment, the unit depends on the unit of the DUTs	
Temperature control rate	Maximum、0~20	Temperature rise and fall rate, select the maximum or custom rate, the custom rate is displayed by the progress bar, unit: °C/min	
Setpoint limit	Enable/ Disable	Enable or Disable set point limit	
Set point range (only when set point limit is enabled)	-200~2000	Set the set point range, unit: °C The calibrator only executes the	

		above control parameters within
		the set point range
Temperature control standard		
Tmeprature control resolution	1,0.1,0.01,0.001	Set the temperature control resolution, which affects the display digits of the sensor signal.
Sensor signal	Read only	Sensor temperature display, display resolution depends on the temperature control resolution setting

(3) DUTs settings

Table 68 Temperature Control Recording Channel Settings

Item	Effective value	Explanation
Basic Settings		
CH1 & CH2 Association	Association/Independent	Set the association in two
		channels
CH1、CH2 measuring items	RTD, TC, current, voltage, HART,	Set channel measurement items
settings	switch test	RTD and TC projects need to
		select the sensor type
		Voltage measurement needs to
		select 12V or 30V gear
Stability	≥0.005	Set the temperature stability
		range, unit: °C
Channel settings (only enabled when current and voltage measurement items are selected)		

Measuring range	-30~30	Set the measurement range, the
		unit depends on the current or
		voltage measurement (click the
		electrical signal unit to switch
		between mA and V)
Scaling range	Depends on calibrator mode	Set the range scaling

How to use:

- (1) After the setting is completed, click ① on the lower right corner to start the temperature control data recording execution function. After a few minutes of temperature control preparation, the calibrator will automatically start the temperature control process and record the temperature control data.
- (2) During the temperature control data recording process, the user can click on the lower right corner at any time to stop the data recording process, but all the executed data will be lost.
- (3) After the temperature control data is recorded, the result interface will be entered, and the user can save the data.

How to view:

(1) The user clicks (9) on the right side of the temperature control data record setting page to view the previously

saved temperature control data record.

(2) Users can click to enter the delete page, select the record to be deleted, and click to delete.

5.3 Drying and Dehumidificataion

The calibrator provides drying and dehumidification function to ensure calibrator all indicators.

◆If the calibrator has not been used for a long time, please perform the drying and dehumidification function before calibrating, otherwise it will easily lead to inaccurate measurement data or damage the calibrator How to set:

Table 69 Drying and Dehumidification

Item	Effective value	Explanation
		Set the dehumidification
		temperature, the calibrator will
Dehumidification	Temperature control upperlimit	control the temperature at this
		temperature for dehumidification
		treatment, unit: °C
Dwell time	≥10	Set dehumidification duration

How to use:

(1) Click on the lower right corner to start the dehumidification function.

(2) Click to terminate the dehumidification function or wait for the dehumidification program to automatically end.

5.4 Step Test

The calibrator provides step test.

How to set:

Table 70 Step Test

Item	Effective value	Explanation
Range	Based on calibrator mode	Set step test range
	One way (n test points)	Set route mode, there are two round-trip modes, the difference is
		the number of times of return point
Route	To and from 1 Λ (2n-1 test	measurement
	points)	
	To and from 2 (2n test points)	
		The dwell time of each test point in
Residence		temperature stabilization and to
time	1~240	before reading, to wait for the
une		constant temperature of the tested
		equipment, in minutes

Cycle index	1/2/3	Cycle index of step test
Setpoint list	Refer to chapter 4.2.2.5 Setpoint	Set the number and value of set
Setpoint list	list	points during calibration
CH 1 & CH 2	Refer to chapter 2.4 DUTs	Set DUTs infromation
CHIACHZ	infromation	
Conrol setting	Refer to chapter 2.3 control setting	Set calibrator control temperature
Comorsetting	Refer to chapter 2.3 control setting	settings

How to save settings:

The calibrator can save up to 20 step test settings. Users can distinguish by name and saving date.

- (1) In the step test setting interface, click on the right to enter the configuration save interface.
- (2) Click to select the configuration to be overwritten, enter the configuration name, and click $\mathfrak D$ on the lower right corner to save data.
- (3) In the step test setting interface, click on the right to load the saved step test setting. How to use:
- (1) Click ① on the right to enter the step test operation interface

(2) Buttons introduction:

Table 71 StepTest Interface

Button	Position	Explanation
()	Lower right conner	Begin step test
	Bottom center of screen	Switch to the previous or next set point
	Lower right conner	Cancel all current data of this step test, and restart the test from the first set point of the first cycle
(iii)	Upper right conner	Switch display mode to normal or graph mode
↑ 100.00 Cyecle index 2	Above the screen (normal mode) or below (chart mode)	Display the current number of cycles and the current number of test points in the cycle For example, it means that the current is the second cycle, Up, and the set point is 100 °C.
(<u>×</u>)	Upper right conner	Exit this step test and enter the data report page, where users can save this step data

(3) Normal operation:

Click to start the test, the calibrator will automatically control the temperature to the first set point

How to view:

The user clicks on the right side of the temperature control data record setting page to view the previously saved temperature control data record

Users can click (1) to enter the delete page, select the record to be deleted, and click (2) to delete.

5.5 Switch Test

A: How to set:

Table 72 Switch Test

Item	Effective value	Explanation
	Open: dry contact, wet contact,	Select switch connection channel
CH 1 & CH 2	NPN switch, PNP switch	and switch type
	Close	
		Set the start and end
		temperature of the switch test
Starting and ending temperature	Depends on the calibrator	The calibrator only starts
Starting and ending temperature	model	to capture the temperature
		switch action within this
		temperature range
Temperature control rate	Maximum、0~20 °C ∕miı	Temperature rise and fall
	Waxiiiuiii 0~20 C/mii	rate, select the maximum or
		custom rate, the custom rate is

		displayed by the progress bar. The calibrator is only in the starting and ending temperature range, then can make temperature control.
Route	One-Way/To and From	Set switch test route mode
Cycle index	1, 2, 3	Set times of repletion of Switch test

B: How to use:

- ◆Click the start button in the lower right corner to enter the switch test interface
- ◆In this interface, the user can read the current temperature indication and switch status at the top of the screen
- ◆Users can switch the interface display mode through on the right interface: chart mode and list mode

 Graph mode: Display the switch test progress in a graph, and only display the switch test results under the current cycle.

List mode: display the test results of the switch in a list.

◆Click the end button in the lower right corner to end the switch test and enter the data saving page

C: How to view the historical data:

In the switch setting interface, click on the right to enter the switch test data list, and the user can view and save the switch test data as needed.

The user can click (1) to enter the delete page, select the record to be deleted, and click (1) to delete.

5.6 Snapshot Feature

A: How to set:

Table 73 Snapshot Settings

Item	Effective value	Explanation
Spanahata	Open/Class	Enable or disable
Snapshots	Open/Close	snapshops
Storage Path	Local / U disk	Select store position of
		the snapshot
Amount of storage (only if		Prompts the user for the
local storage path is selected)	Read Only	number of snapshots that can be
Toom corruge paint to correctly		saved in a local file
	Numbers, letters and	prefix setting of snapshot file
File prefix	Chinese, up to 16 bits input is	saved name
The prenx	supported	
File name	Time/ Serial NO.	Select automatically add mode

		for snapshot file name
		Select the serial number as the
		starting name the snapshot file
		name
Start serial number (only when		If the selected serial number is
serial number is selected as file	1~1000	occupied, the dry body
name)		calibrator will be automatically
		set to the latest available serial
		number during screen capture
		operation

B: How to use:

On the main interface of the calibrator, the user clicks on the top of the screen to take a snapshot.

◆The calibrator only supports screenshots of the main interface.

C: How to view:

In the snapshot settings interface, users can browse the saved snapshot files by clicking the browse button in the lower right corner, and swipe the screen left or right to browse other snapshot files

The browse operation can only browse the snapshot files in the current storage path. If you need to browse the

snapshot files in other storage paths, please switch the storage path.

D: Select Local as storage path

After clicking the snapshot button, the calibrator will take a snapshot operation and prompt the save name of the current snapshot.

- ◆Click ⊕ on the right to export all the snapshots stored locally to the U disk
- ◆Click [®] on the right to delete all locally stored snapshots

E: Select U disk as storage path:

◆The user needs to first confirm whether the U disk is connected correctly.

After clicking the snapshot button, the calibrator will take a snapshot operation and prompt for a file name of the current snapshop.

5.7 Annealing Application

Only supported by high temperature calibrator.

A: How to set:

- ◆Enter the annealing application, click ⊕ on right side to create a new application configuration of the specified sensor.
- ◆Set sensor name, annealing temperature, annealing time, cooling temperature and cooling rate respectively.

Sensor name: the sensor corresponding to this task, and save the configuration in the task name.

Annealing temperature: the annealing temperature of the sensor, the device will heat up to this temperature.

Annealing time: the time that the equipment will remain at this temperature after reaching annealing temperature.

Cooling temperature: the target temperature that the equipment will cool to after reaching annealing time period.

Cooling rate: the cooling rate when the equipment is cooled (divided into fast, medium and slow speeds and natural cooling at slow speeds).

◆Click on the lower right corner to save the configuration and enter to annealing operation interface.

B:How to use

- lacktriangle Enter the editing interface by creating or selecting an existing application configuration to adjust the configuration as needed, then click lacktriangle on the lower right corner to save the configuration and enter to the annealing operation interface.
- ◆Click the associated sensor of the electrical measurement control at the bottom of the interface for real-time monitoring as needed (modification is still allowed during the operation phase).
- ◆Click ▶ on the lower right corner to start annealing. After annealing is completed, the program will pop up to prompt that the test is complete, and the user will automatically return to the task configuration selection interface after confirmation.
- ◆Users can click

 on the lower right corner to stop the test at any time during the running process.
- C: Management Task Configuration
- ◆In the task configuration selection interface, the user can create a new sensor annealing application configuration by clicking ⊕ on the right side.
- ◆Users can enter the delete page by clicking (fi) on the right side and choose to delete the created application

°C. After re-

configuration file.

5.8 Water Triple Point

Only supported by low temperature calibrator.

5.8.1 Process Instruction

- (1) The operation process has six stages: preparation stage, freezing preparation, freezing stage, TPW realization, and TPW maintenance and melting stage. Click ① on the right to start the freezing of the water triple point.
- (2) During the operation process, you can click on the right at any stage to enter the melting stage. The melting stage will automatically control the temperature to a safe temperature to protect the water triple point bottle.
- (3) In the preparation stage, the temperature will be controlled to 55 minutes. After the end of 5 minutes, it will automatically enter into the freezing preparation stage.
- (4) During the freezing preparation stage, the temperature will be controlled to -5.5°C. After the temperature control is completed, it will automatically enter the freezing stage.

- (5) The freezing phase lasts for 8 minutes. After the 8-minute countdown is over, the interface will prompt the user to take out the triple point cell for the realization operation and observe the phenomenon in the form of a pop-up window. If the realization is successful, please click the confirmation button on the pop-up window and the system will enter the TPW implementation stage. If the realization fails, please click the cancel button on the interface, and the system will enter the melting phase. When the pop-up window appears, the system will send out a continuous beep to remind the user to operate. If the user does not operate, the pop-up window will automatically disappear after two minutes and automatically enter the melting stage.
- (6) In the TWP realization phase, the temperature will be controlled to 0.005°C. After the temperature control is completed, it will enter a ten-minute countdown, and after the countdown, it will enter the temperature control TWP holding phase. The temperature during the TWP storage phase is stable at 0.005, it can be maintained for up to three hours. In this phase, the phase of measuring the thermometer Rtpw is tested. In the TWP storage stage, if the temperature is unstable, it will automatically enter melting the stage.
- (7) During the melting stage, the temperature will be automatically controlled to a safe temperature (20°C) to

protect the water triple point cell.

5.8.2 How To Use

- (1) The Rtpw button on the right side of the interface will be displayed when the temperature sensor is connected to the external channel of the device, and it can be clicked when the test enters the Tpw saving stage. Click the Rtpw button to enter the Rtpw adjustment interface.
- (2) When the non-smart sensor is connected, the interface displays the internal temperature, the temperature and resistance value of the external sensor. Click 'Fetch" to obtain the Rtpw in the sensor library corresponding to the current sensor. This will modified the measured resistance value and the TPW value stored in the smart sensor.
- (3) After clicking "Fetch" to save the Rtpw value, the Rtpw adjustment interface will be automatically closed. At this time, the sensor can be replaced to continue the test.

5.9 Grid Quality

Only supported by high temperature calibrator

A: How to set

Table 74 Grid Quality

Item	Effective value	Explanation
Mian power voltage	(90~254) V	The voltage value of the total grid in the grid test
Frequency	(45~65)Hz	Frequency

B:How to use

- (1) Click the start button in the lower right corner to enter the switch test interface
- (2) Click to terminate the grid quality test or the grid quality waiting for test program will be terminated automatically. The power grid quality test process is five minutes in total.
- (3) After the test is over, it will automatically enter the test data save interface.

C: How to view

- (1) The user clicks on the right side of the grid quality test setting page to view the previously saved grid quality test records.
- (2) The user can click (19) to enter the delete page, select the record to be deleted, and click (19) to delete.

Additel Corporation

2900 Saturn Street #B

Brea, CA 92821 USA

Attn: Jenny Pu

Phone: 714-998-6899

Email: service@additel.com

website: www.additel.com